CMY 210-1960 MHz to 110 MHz Down-Converter
Application Note
No. 037
The CMY 210 is a ultralinear mixer with integrated LO-buffer for frequencies up to and exceeding 2.5 GHz . A low LO-input power of typically 0 dBm is sufficient to provide a very high input intercept point of typically +25 dBm at 3 V .
The input and output ports are 50Ω matched. The device can be used as up- and downconverter.

Application Circuit

Figure $1 \quad$ Application Circuit
Table 1 List of Components

L_{1}	3.3 nH Coilcraft 0805	C_{3}	12 pF 0805
L_{2}	3.3 nH Coilcraft 0805	C_{4}	12 pF 0805 parallel to $0.47 \mu \mathrm{~F}$
L_{3}	$2.2-2.7 \mathrm{nH}$ or printed coil (tune for minimum power consumption)	C_{5}	150 pF 0805
L_{4}	3.3 nH Coilcraft 0805 (tune for minimum power consumption)	C_{6}	Not required in this application
C_{1}	1.8 pF 0805	R_{1}	Not required in this application
C_{2}	1.2 pF 0805		

Setup

1. In order to optimize power consumption, L_{4} can be modified for minimum drain current: Switch on local oscillator at required LO-frequency and check the drain current. Adjust the LO-frequency to find the minimum current. If the minimum is detected at a lower frequency than the required LO-frequency, choose a lower value inductor for L_{4}; if detected at a higher frequency, choose a higher value.
2. Matching of IF- and RF-filters

Figure 2 CMY 210 External Matching Circuit

Figure 3 IF-Matching Setup and RF-Matching Setup
Usually both resonance filters (L_{1}, C_{1} and L_{2}, C_{2}) are tuned to the RF-frequency. Filter L_{1}, C_{1} passes the RF-frequency and reflects the IF-signal. Filter L_{2}, C_{2} suppresses the RF-band and passes IF. An appropriate adjustment of the filters is the prerequisite to achieve a lower conversion loss. According to Figure 2 the resonance frequency of the IF-filter $L_{2}, C_{2}\left(f_{\text {res }}=1 /\left(2 \pi \sqrt{L_{2} \times C_{2}}\right)\right)$ can be adjusted to maximum reflection at $f_{\text {RF }}$ by choosing appropriate inductors and capacitors. Correspondingly, the L_{1}, C_{1} resonance frequency of RF-filter can be matched with minor modification of these values according to Figure 2. Since the IF- and RF-filters are connected with the ohmic resistor of the switching FET, matching of either filter might influence the matching parameters of the other filter.
3. At higher LO-frequencies ($>2 \mathrm{GHz}$) the gain of the LO buffer amplifier is already decreasing, causing a slightly lower $I P_{31 \mathrm{~N}}$ and higher operating current.
4. The $I P_{3 I N}$ remains very constant with changes in operating voltage. A supply voltage of less than 2 V however will decrease the intermodulation performance. Please refer to the following figure. The conversion losses L_{C} are independent of the operating voltage as long as the switch transistor is not pinched off. The losses are mainly determined by the quality of IF- and RF-filters as mentioned in 2 .
$I P_{3 I N}, L_{C}$ vs. Operation Voltage $f_{\mathrm{RF}}=1960 \mathrm{MHz}, P_{\mathrm{RF}}=2 \mathrm{x}-3 \mathrm{dBm}$, $f_{\mathrm{LO}}=2070 \mathrm{MHz}, P_{\mathrm{LO}}=0 \mathrm{dBm}$

5. The figure below shows the operating current over LO-frequency. A current minimum at approximately 2070 MHz has been obtained by tuning the circuit for this LOfrequency as described in 2.

Operating Current vs. LO-Frequency
$V_{\mathrm{D}}=3 \mathrm{~V}, P_{\mathrm{LO}}=0 \mathrm{dBm}$

6. The operation current over the operating voltage at a fixed $f_{\mathrm{LO}}=2070 \mathrm{MHz}$ is shown in the following figure.

Operation Current vs. Operation Voltage at $f_{\mathrm{LO}}=2070 \mathrm{MHz}$

Layout of 1960 MHz to 110 MHz Down-Converter

Figure 4 Layout of Application Board
PCB - data: Glass fiber epoxy board (double sided), $\varepsilon_{r}=4.8$, thickness $=1.0 \mathrm{~mm}$

Keydata of 1960 MHz to 110 MHz Down-Converter

(Test conditions: $V_{\mathrm{D}}=3.0 \mathrm{~V} ; f_{\mathrm{RF}}=1960 \mathrm{MHz} \pm 0.5 \mathrm{MHz} ; P_{\mathrm{RF}}=2 \mathrm{x}-3 \mathrm{dBm}$; $\left.f_{\mathrm{LO}}=2070 \mathrm{MHz} ; P_{\mathrm{LO}}=0 \mathrm{dBm} ; f_{\mathrm{IF}}=110 \mathrm{MHz} ; T_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Value	Unit
Operating current	I_{OP}	8.1	mA
Conversion Loss	L_{C}	5.9	dB
$3^{\text {rd }}$ Order Input Intercept Point	$I P_{3 I N}$	+22.6	dBm
RF- /IF-Input Return Loss	IRL	>12	dB

$2^{\text {nd }}$ order intermodulation
(Test conditions: $f_{\mathrm{RF}}=1960 \mathrm{MHz} ; P_{\mathrm{RF}}=-3 \mathrm{dBm} ; f_{\mathrm{LO}}=2070 \mathrm{MHz} ; P_{\mathrm{LO}}=0 \mathrm{dBm}$)

