CLC018 8×8 Digital Crosspoint Switch, 1.485 Gbps

Check for Samples: CLC018

FEATURES

- Supports SMPTE 259M, SMPTE 344M, and SMPTE 292M
- Fully Differential Signal Path
- Non-Blocking
- Flexible Expansion to Larger Array Sizes with Very Low Power
- Single $+5 /-5 \mathrm{~V}$ or Dual $\pm 5 \mathrm{~V}$ Operation
- TRI-STATE Outputs
- Double Row Latch Architecture
- 64-Lead QFP Package

APPLICATIONS

- Routing Switchers
- Production Switchers
- Master Control Switchers
- Telecom/Datacom Switchers
- Storage Area Network (SAM)
- Packet Switching
- ATM SONET

KEY SPECIFICATIONS

- High Speed: >1.485 Gbps
- Low Jitter:
- <50 $\mathrm{ps}_{\mathrm{pp}}$ for Rates < 500 Mbps
- <100 ps ${ }_{\text {pp }}$ for Rates $<1.485 \mathrm{Gbps}$
- Low Power; 850 mW with all Outputs Active
- Fast Output Edge Speeds: 250 ps

DESCRIPTION

The CLC018 is a fully differential 8×8 digital crosspoint switch capable of operating at data rates exceeding 1.485 Gbps per channel. Its non-blocking architecture utilizes eight independent 8:1 multiplexers to allow each output to be independently connected to any input and any input to be connected to any or all outputs. Additionally, each output can be individually disabled and set to a high-impedance state. This TRI-STATE feature allows flexible expansion to larger switch array sizes.

Low channel-to-channel crosstalk allows the CLC018 to provide superior all-hostile jitter of $50 \mathrm{ps}_{\mathrm{pp}}$. This excellent signal fidelity along with low power consumption of 850 mW make the CLC018 ideal for digital video switching plus a variety of data communication and telecommunication applications.
The fully differential signal path provides excellent noise immunity, and the I/Os support ECL and PECL logic levels. In addition, the inputs may be driven single-ended or differentially and accept a wide range of common mode levels including the positive supply. Single +5 V or -5 V supplies or dual +5 V supplies are supported. Dual supply mode allows the control signals to be referenced to the positive supply (+5 V) while the high-speed I/O remains ECL compatible.
The double row latch architecture utilized in the CLC018 allows switch reprogramming to occur in the background during operation. Activation of the new configuration occurs with a single "configure" pulse. Data integrity and jitter performance on unchanged outputs are maintained during reconfiguration. Two reset modes are provided. Broadcast reset results in all outputs being connected to input port DIO. TRISTATE Reset results in all outputs being disabled.
The CLC018 is fabricated on a high-performance BiCMOS process and is available in a 64 -lead plastic quad flat pack (QFP).

[^0]
CLC018 BLOCK DIAGRAM

Output Eye Pattern, 1.4Gbps

150ps/div

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

ABSOLUTE MAXIMUM RATINGS ${ }^{(1)(2)}$

Supply Voltage $\left(\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}\right)$	-0.3 V to +6.0 V	
$\mathrm{~V}_{\mathrm{LL}}$ Maximum	$\mathrm{V}_{\mathrm{CC}}+6 \mathrm{~V}$	
$\mathrm{~V}_{\mathrm{LL}}$ Minimum	$\mathrm{V}_{\mathrm{CC}}-0.5 \mathrm{~V}$	
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	
Lead Temp. (Soldering 4 sec.)	$+260^{\circ} \mathrm{C}$	
ESD Rating	$\theta_{\mathrm{JA}} 64-$ Pin QFP	TBD
Package Thermal Resistance	$\theta_{\mathrm{JC}} 64-$ Pin QFP	$75^{\circ} \mathrm{C} / \mathrm{W}$
	Transistor Count	$15^{\circ} \mathrm{C} / \mathrm{W}$

(1) Absolute Maximum Ratings are those values beyond which the safety of the device cannot be ensured. They are not meant to imply that the devices should be operated at these limits. The table of Electrical Characteristics specifies conditions of device operation.
(2) If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/Distributors for availability and specifications.

RECOMMENDED OPERATING CONDITIONS

Supply Voltage $\left(\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}\right)$	4.5 V to 5.5 V
Operating Temperature	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
V_{LL}	V_{CC} or $\mathrm{V}_{\mathrm{CC}}+5 \mathrm{~V}$

ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5 \mathrm{~V}, \mathrm{~V}_{\mathrm{LL}}=0 \mathrm{~V}\right.$; unless otherwise specified) ${ }^{(1)}$.

Parameter	Conditions	$\begin{gathered} \text { Typ } \\ +25^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & \mathrm{Min} / \mathrm{Max} \\ & +25^{\circ} \mathrm{C}^{(2)} \end{aligned}$	Min/Max $-40^{\circ} \mathrm{C}$ to $+85^{\circ}{ }^{(2)}$	Units
DYNAMIC PERFORMANCE					
Max. Data Rate/Channel (NRZ)	See ${ }^{(3)}$	1.485			Gbps
Channel Jitter	Data Rate $<500 \mathrm{Mbps}^{(4)}$	50			pSpp
	Data Rate $<1.485 \mathrm{Gbps}^{(4)}$	100			ps ${ }_{\text {pp }}$
Propagation Delay (input to output)		0.75			ns
Propagation Delay Match	See ${ }^{(5)}$	± 200			ps
Output Rise/Fall Time	See ${ }^{(6)}$	250			ps
Duty Cycle Distortion	See ${ }^{(7)}$	10			ps
CONTROL TIMING: CONFIGURATION ${ }^{(8)}$					
OA Bus to LOAD \uparrow Setup Time (T_{1})		15			ns
LOAD \downarrow to OA Bus Hold Time (T_{2})		0			ns
IA Bus, TRI to LOAD \downarrow Setup Time (T_{3})		5			ns
LOAD \downarrow to IA Bus, TRI Hold Time (T_{4})		5			ns
Min Pulse Width: $\left(T_{5}\right)$					
LOAD		10			ns
CNFG		10			ns
LOAD \uparrow to CNFG \uparrow Delay (T_{6})		0			ns
CNFG \uparrow to Valid Delay (T_{7})		20			ns
CNFG \uparrow to Output TRI-STATE Delay (T_{8})		20			ns
CNFG \uparrow to Output Active Delay (T_{9})		70			ns
CONTROL TIMING: RESET ${ }^{(9)}$					
TRI to RES \uparrow Setup Time (T_{10})		5			ns
RES \downarrow to TRI Hold Time (T_{11})		5			ns
Min Pulse Width: RES (T_{12})		10			ns
RES \uparrow to TRI-STATE Mode Delay (T_{13})		20			ns
RES \uparrow to Broadcast Mode Delay (T_{14})		70			ns
STATIC PERFORMANCE					
Signal I/O:					
Min Input Swing, Differential	$\left(\right.$ See $\left.{ }^{(10)}\right)$	150	200	200	$m V_{P P}$
Input Voltage Range Lower Limit		-2			V
Input Voltage Range Upper Limit		0.4			V
Input Bias Current	(See ${ }^{(10)}$ and ${ }^{(11)}$)	1.5	0.4/3.1	0.3/3.8	$\mu \mathrm{A} /$ output
Output Current	(See ${ }^{(10)}$)	10.7	8.53/12.80	7.20/14.3	mA
Output Voltage Swing	$\mathrm{R}_{\text {LOAD }}=75 \Omega$	800	640/960	540/1060	mV
Output Voltage Range Lower Limit		-2.5			V
Output Voltage Range Upper Limit		0			V

(1) V_{LL} and all V_{EE} supply pins are bypassed with $0.01 \mu \mathrm{~F}$ ceramic capacitor.
(2) $\mathrm{Min} / \mathrm{max}$ ratings are based on product characterization and simulation. Individual parameters are tested as noted. Outgoing quality levels are determined from tested parameters.
(3) Bit error rate less than 10^{-9} over 50% of the bit cell interval.
(4) Measured using a pseudo-random ($2^{23}-1$ pattern) binary sequence with all other channels active with an uncorrelated signal.
(5) Spread in propagation delays for all input/output combinations.
(6) Measured between the 20% and 80% levels of the waveform.
(7) Difference in propagation delay for output low-to-high vs. output high-to-low transition.
(8) Refer to the Configuration Timing Diagram.
(9) Refer to the Reset Timing Diagram.
(10) J -level spec. is 100% tested at $+25^{\circ} \mathrm{C}$.
(11) The bias current for high speed data input depends on the number of data outputs that are selecting that input.

ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5 \mathrm{~V}, \mathrm{~V}_{\mathrm{LL}}=0 \mathrm{~V}\right.$; unless otherwise specified) ${ }^{(1)}$.

Parameter	Conditions	$\begin{gathered} \text { Typ } \\ +25^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & \operatorname{Min} / \text { Max } \\ & +25^{\circ} \mathbf{C}^{(2)} \end{aligned}$	Min/Max $-40^{\circ} \mathrm{C}$ to $+85^{\circ}{ }^{(2)}$	Units
Control Inputs:					
Input Voltage - HIGH $\mathrm{V}_{\text {IH min }}$	$\left(\right.$ See $\left.{ }^{(12)}\right)$	-1	-0.5	-0.5	V
Input Voltage - LOW $\mathrm{V}_{\text {IL }}$ max	(See ${ }^{(12)}$)	-4	-4.5	-4.5	V
Input Voltage - HIGH $\mathrm{V}_{\text {IH min }}$	$\mathrm{V}_{\mathrm{LL}}=+5 \mathrm{~V}^{(12)}$	4	4.5	4.5	V
Input Voltage - LOW $\mathrm{V}_{\text {IL max }}$	$\mathrm{V}_{\mathrm{LL}}=+5 \mathrm{~V}^{(12)}$	1	0.5	0.5	V
Input Current - HIGH	$\mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{LL}}{ }^{(12)}$	1	0.2/2.0	0.1/2.5	$\mu \mathrm{A}$
Input Current - LOW	$\mathrm{V}_{\mathrm{IL}}=\mathrm{V}_{\mathrm{LL}}-5 \mathrm{~V}^{(12)}$	-100	-200/10	-250/15	$\mu \mathrm{A}$
MISCELLANEOUS PERFORMANCE					
$\mathrm{V}_{\text {CC }}$ Supply Current	All Outputs Active ${ }^{(12)(13)(14)}$	157	127/202	119/217	mA
$\mathrm{V}_{\text {CC }}$ Supply Current	All Outputs TRI-STATE ${ }^{(12)}$	7	3/11	2/12	mA
V LL Supply Current	$\mathrm{V}_{\mathrm{LL}}=0 \mathrm{~V}^{(12)}$	2.5	1.7/3.3	1.5/3.5	mA
V LL Supply Current	$\mathrm{V}_{\mathrm{LL}}=+5 \mathrm{~V}^{(12)}$	7			mA
Input Capacitance		1.5			pF
Output Capacitance		2			pF

(12) J-level spec. is 100% tested at $+25^{\circ} \mathrm{C}$.
(13) The V_{CC} supply current is a function of the number of active data outputs. I $\mathrm{I}_{\mathrm{VCC}} 18^{*} \mathrm{~N}+7 \mathrm{~mA}$ where N is an integer from 0 to 8 .
(14) $I_{V E E}=I_{V C C}+I_{\text {VLL }}$.

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 1.

Figure 3.

Prop. Delay vs. Temperature

Figure 5.

Percent Eye Opening vs. Data Rate

Figure 2.

Figure 4.

Total Supply Current vs. Temperature

Figure 6.

CONNECTION DIAGRAM

Figure 7. 64-Lead QFP- Top View See Package Number NBH0064A

PIN DESCRIPTIONS

POWER PINS V_{CC} is the most positive rail for the data path. When the data levels are ECL compatible, then V_{CC} should be connected to GND. For PECL data (+5 V referenced ECL), V_{CC} is connected to the +5 V supply. Please refer to the Device Operation section in this datasheet for recommendations on the bypassing and ground/power plane requirements of this device. $\mathrm{V}_{\text {EE }}$ is the most negative rail for the data path. When the data levels are ECL compatible, then $\mathrm{V}_{\text {EE }}$ is connected to a -5.2 V power supply. For PECL data (+5 V referenced ECL), $\mathrm{V}_{\text {EE }}$ is connected to GND. V_{LL} is the logic-level power supply. If the control signals are referenced to $+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{LL}}$ is connected to $\mathrm{a}+5 \mathrm{~V}$ supply. If control signals are ECL compatible, V_{LL} is connected to GND.
DATA INPUT PINSDIO and $\overline{\mathrm{DIO}}$ through DI7 and $\overline{\mathrm{D} 17}$ are the data input pins to the CLC018. Depending upon how the Power pins are connected (please refer to the Power Pins section) the data may be either differential ECL, or differential PECL. To drive the CLC018 inputs with a single-ended signal, please refer to the section Using Single-Ended Data in the OPERATION section of this datasheet.
DATA OUTPUT PINSDOO and $\overline{\mathrm{DOO}}$ through DO7 and $\overline{\mathrm{DO7}}$ are the data output pins of the CLC018. The CLC018 outputs are differential current outputs which can be converted to ECL or PECL compatible outputs through the use of load resistors. Please refer to the Output Interfacing paragraph in the OPERATION section of this datasheet for more details.

CONTROL PINS IA2, IA1 and IA0 are the three bit input selection address bus. The input port to be addressed is placed on this bus. IA2 is the Most Significant Bit (MSB). If input port 6 is to be addressed, IA2, IA1, IA0 should have $1,1,0$ asserted on them. The IA bus should be driven with CMOS levels, if V_{LL} is +5 V . These levels are thus +5 V referenced (standard CMOS). If V_{LL} is connected to GND, the input levels are referenced to the -5 V and GND supplies.
OA2, OA1 and OAO are the output selection address bus. The output port selected by the OA bus is connected to the input port selected on the IA bus when the data is loaded into the configuration registers. OA2 is the MSB. If OA2, OA1, OA0 are set to $0,0,1$; then output port 1 will be selected. CS is an active-high chip select input. When CS is high, the RES, LOAD, and CNFG pins will be enabled. LOAD is the latch control for the LOAD register. When LOAD is high, the load register is transparent. Outputs follow the state of the IA bus, and are presented to the inputs of the Configuration register selected by the OA bus. When LOAD is low, the outputs of the Load register are latched. RES is the reset control of the configuration and load registers. A high-going pulse on the RES pin programs the switch matrix to one of two possible states: with TRI low, all outputs are connected to input \#0; with TRI high, all outputs are put in TRI-STATE condition.
TRI will program the selected output to be in a high impedance or TRI-STATE condition. To place an output in TRI-STATE, assert a logic-high level on the TRI input when the desired input and output addresses are asserted on the respective address inputs and strobe the LOAD input as depicted in the

Configuration Truth Table. To enable an output, assert a logic-low level on the TRI input together with the appropriate addresses and strobe the LOAD input as previously described.
CNFG is the configuration register latch control. When CNFG is high the Configuration register is made transparent, and the switch matrix is set to the state loaded into the Load registers. When CNFG is low, the state of the switch matrix is latched.

TIMING DIAGRAMS

Figure 8. Timing Diagram - TRI-STATE Reset

Figure 9. Timing Diagram - "Broadcast Reset"

Figure 10. Timing Diagram—Switch Configuration

OPERATION

INPUT INTERFACING

The inputs to the CLC018 are high impedance differential inputs (see the equivalent input circuit in Figure 11). The CLC018 can be operated with either ECL or PECL (+5 V referenced ECL), depending upon the power supply connections. The inputs are differential and must both be within the range of $\mathrm{V}_{\mathrm{CC}}-2 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{CC}}+0.4 \mathrm{~V}$ in order to function properly.

Figure 11. Equivalent Input Circuit

SINGLE ENDED INPUTS

Differential inputs are the preferred method of providing data to the CLC018, however, there are times when the only signal available is single ended. To use the CLC018 with a single ended input, the unused input pin needs to be biased at a point higher than the low logic level, and lower than the high logic level. For best noise performance, the middle of the range is best. For ECL signals this point is about 2 diode drops below ground. It is possible to bias the unused input with a low-pass filtered version of the data, as shown in Figure 12. In some coding schemes there are pathological patterns that result in long sequences with no data transitions. During these patterns, the bias on the unused input will drift towards the other input reducing the noise immunity which makes this scheme undesirable. The most robust solution for single ended inputs is to place a comparator with hysteresis in front of the CLC018. Such a part is the MC10E1652. See Figure 13 for an example of how to hook this up.

Figure 12. Single Ended Input to CLC018

Figure 13. Single Ended Input to CLC018

OUTPUT INTERFACING

The outputs of the CLC018 are differential, current source outputs. They can be converted to ECL compatible levels with the use of resistive loads as shown in Figure 14. The output swings will have a similar temperature coefficient to 10KECL if a 1 N 4148 diode is used to set V_{OH}. For most commercial temperature range applications, a 75Ω resistor can be used as shown in Figure 15. Many circuits with differential inputs, such as the CLC016 Data Retimer With Automatic Rate Selection, do not require true ECL levels, so the load resistors can be connected directly to the positive rail as shown in Figure 16.

Figure 14. Generating 10k ECL Outputs

Figure 15. Generating ECL Outputs

Figure 16. Connecting the CLC018 to the CLC016

OUTPUT SIGNAL QUALITY

The output signal eye pattern shown in Figure 17 was acquired using an Agilent 86100A scope and 86112A plug in along with a TEK P6330 3GHz differential probe. The differential signal was probed across the output pins of the CLC018. 75 Ohm pull up resistor were used as shown in Figure 16. A PRBS23 pattern was driven through the part, and the resulting eye pattern is shown in Figure 17. The eye pattern is affected by the HF roll-off of the probe which degrades the output transition time and affects jitter. Even with this loading the CLC018 provides excellent signal quality and low jitter at 1.485 Gbps. Note 150 ps/div and $250 \mathrm{mV} /$ div.

Figure 17. 1.485 Gbps Eye Pattern

POWER SUPPLIES, GROUNDING AND BYPASSING

The CLC018 uses separate power supplies for control and data circuitry. Data circuitry is supplied via V_{CC} and control circuitry via V_{LL}. Supply connection V_{EE}, the negative-most supply, is the common return for both. Connection details for the different powering modes is shown in Table 1.

Internal and external capacitances, normal and parasitic, must be charged and discharged with changes in output voltage. Charging current depends upon the size of these capacitances and the rate of change of voltage. At the fast transition times of the CLC016, small amounts of stray capacitance at outputs can produce large output and supply transient currents. Controlling transient currents requires particular attention to minimizing stray capacitances and to providing effective bypassing in the design. Good and effective bypassing consisting of $0.01 \mu \mathrm{~F}$ to $0.1 \mu \mathrm{~F}$ monolithic ceramic and $4.7 \mu \mathrm{~F}$ to $10 \mu \mathrm{~F}, 35 \mathrm{~V}$ tantalum capacitors. These capacitors should be placed as close to power pins as practical and tightly connected to the power plane sandwich using multiple vias. Needless to say, multilayer board technology should be employed for the CLC018 and similar high-frequencycapability devices.

CONFIGURING THE SWITCH

The CLC018 can be configured so that any output may be independently connected to any input and any input be connected to any or all outputs. Each output may be independently enabled or placed in a high-impedance state.
Data controlling the switch matrix and output mode are stored in two ranks of eight, 4-bit registers, one register per output. The three most-significant bits in each register identify the input to be connected to that output. The least-significant bit controls whether the output is active or TRI-STATE. A particular register in the first rank, the LOAD REGISTERS, is selected by a 3-bit word placed on the output address (OA) bus. Data to be written into the load register, consisting of the 3-bit address of the input to be connected to that output and the output-enable control bit, are placed on the input address (IA) bus. Input data is stored in the load registers at the low-to-high transition of the LOAD input pin with chip-select (CS) high-true. The contents of the load registers are transferred to the second rank of CONFIGURATION REGISTERS at the low-to-high transition of the CNFG input signal (with CS high). This causes the state of the entire switch matrix to be set to the selected configuration.
The entire crosspoint may be placed in an initializing state, with all outputs connected to input-0 and with all outputs either enabled or TRI-STATE. To do so, hold TRI low to make outputs active, or high to place outputs in TRI-STATE, and apply a high-going pulse to the RES input pin (with CS high).
In summary, outputs are configured by:
a. First placing the 3 -bit address of that output on the OA bus together with
b. The 3-bit address of the input to be connected to that output on the IA bus,
c. The output-enable (TRI-STATE) control bit for that output on the IA bus,
d. Making chip-select (CS) true, and then
e. Providing a high-going pulse to the LOAD input pin.
f. Repeat these four steps for each output to be configured.

The entire crosspoint matrix may now be configured with the data held in the load registers. To implement the configuration, apply a high-going pulse to the CNFG input pin. The contents of the load registers are transferred to the configuration registers and the new configuration of all crosspoints is effected.

The CLC018 Configuration Truth Table is shown at the end of the datasheet.

EXPANDING THE SWITCH SIZE

The CLC018 was designed for easy expansion to larger array sizes without paying a significant penalty in either speed or power. The power dissipation of the expanded array will be dominated by the number of active outputs, therefore power will increase linearly with the array size even though the number of components required increases as the square of the array size. As an example, a single CLC018 can be used for an 8×8 array, and it will dissipate about 0.85 W . A 32×32 array will require 16 CLC018s and will consume only about 4 W .

Table 1. Interfacing of the Power Supplies and Bypass Capacitors

Supply Operation	Single -5V	Single +5V	Dual $\pm 5 \mathrm{~V}$
I/O Data Level	ECL	PECL	ECL
Control Signal Low/High	-5V/GND	GND/+5V	GND/+5V
Connection			
Key Information	1. Bypass each V_{EE} supply with a $0.01 \mu \mathrm{~F}$ capacitor. 2. Connect V_{CC} and V_{LL} to the ground plane. 3. A power plane isn't required for V_{EE} but can be used.	1. Bypass each V_{CC} supply with a $0.01 \mu \mathrm{~F}$ capacitor. 2. Bypass the V_{LL} supply with a $0.01 \mu \mathrm{~F} .3$. Connect $\mathrm{V}_{\text {EE }}$ to the ground plane. 4. Use $\mathrm{a}+5 \mathrm{~V}$ power plane for V_{CC}.	1. Bypass each $\mathrm{V}_{\text {EE }}$ supply with a $0.01 \mu \mathrm{~F}$ capacitor. 2. Bypass the V_{LL} supply with a $0.01 \mu \mathrm{~F} .3$. Connect $V_{C C}$ to the ground plane. 4. A power plane isn't required for $+5 \mathrm{~V}\left(\mathrm{~V}_{\mathrm{LL}}\right)$ or -5 V (V_{EE}) supplies. but can be used.

EXPANDING THE NUMBER OF OUTPUT PORTS

To expand the number of output ports in a switch array, the inputs of multiple CLC018s are connected in parallel. The bus used to connect the input ports should be a controlled impedance transmission line as shown in Figure 18. To control the switch array, the IA, OA and TRI buses are all connected in parallel and a decoder is used to assert high the CS of the CLC018 that is to be addressed. This is also shown in Figure 18.

Figure 18. 8×16 Crosspoint Example

EXPANDING THE NUMBER OF INPUT PORTS

Expanding the number of inputs in a switch array is accomplished by wire-ORing the outputs together, and TRISTATEing the outputs of the CLC018s that do not have their inputs selected. The output bus should be a controlled impedance transmission line with proper termination. This is shown in Figure 19. The circuit uses a 1-of-2 decoder with complemented outputs to control the TRI pins of the CLC018s in the array. Thus, all CLC018s are programmed simultaneously, and all of them, except for the one with the selected input, are placed in the TRI-STATE mode.

EXPANDING BOTH INPUTS AND OUTPUTS

To increase both the number of inputs and outputs in an array, apply both the input port and output port expansion techniques simultaneously. In Figure 20, this is shown for the case of a 24 input by 32 output switch array. Note that both input and output buses need to be controlled impedance transmission lines. The CS pins for rows of CLC018s are connected together and become the row select inputs, whereas the TRI pins are connected together for the columns of CLC018s and become the column select pins.

Figure 19. Expanded Input Ports

Figure 20. 24×32 Output Switch Array

CALCULATING THE POWER DISSIPATION IN AN EXPANDED ARRAY

The CLC016 dissipates about 100 mW per active output plus about 50 mW quiescent power. With all outputs active, this is about 850 mW . In an expanded array, all devices will dissipate quiescent power, but only those devices with active outputs will dissipate the $100 \mathrm{~mW} /$ output. So, an N -by-M device array (an $8 \times \mathrm{N}$-input-by- $8 \times \mathrm{M}$ output switch) with all outputs active will dissipate $\mathrm{N} \times \mathrm{M} \times 50 \mathrm{~mW}+8 \times \mathrm{M} \times 100 \mathrm{~mW}$. A 32-input $\times 32$-output (4 $\times 4$ device) switch array dissipates $4 \times 4 \times 50 \mathrm{~mW}+8 \times 4 \times 100 \mathrm{~mW}=4 \mathrm{~W}$.

CONTROLLED IMPEDANCE TRANSMISSION LINES AND OTHER LAYOUT TECHNIQUES

All transmission lines whose length is greater than $1 / 4$ wavelength of the highest frequencies present in the transmitted signal require proper attention to impedance control to avoid distortion of the signal. Digital signals are especially susceptible to distortion due to poorly controlled line characteristics and reflections. With its 250 ps output transitions, which imply a bandwidth of 4 GHz or more, transmission lines driven by the CLC018 must be carefully designed and correctly terminated. Either microstrip line, which resides on the outer surfaces of a printed circuit board and paired with an image ground plane, or stripline, which is sandwiched in an inner layer between image ground planes, may be used in CLC018 designs. With either line type, it is important to maintain a uniform characteristic impedance over the entire extent of the transmission line system. Likewise, the receiving end of these lines must be terminated in a resistance equal to the characteristic impedance to preserve signal fidelity. Figure 21 shows representative methods of interfacing to and from the CLC018.
Often, when voltage-mode drivers, such as ECL, with low output impedance (also called equivalent generator resistance) are used to drive bus networks, a series resistor connects the output of the amplifier to the transmission line. This resistor serves both as a termination for any signals travelling toward the source- end of the line and as the series leg of a voltage divider (with the transmission line as the shunt leg) to reduce the transmitted signal level. This resistor's correct value is $Z_{0}-R$ оит. However, a value equal to Z_{O} may be used successfully in most situations. The receiving end of the line is terminated in a resistance equal to the value of Z_{0} of the receiving end of the line. A resistance equal to the line's Z_{0} works in most situations. In cases where the bus is heavily loaded, the receiving end termination's value may need to be reduced to the loaded- Z_{0} of the line. (Please see the material on distributed loading effects on line characteristics in the Fairchild F100K ECL 300 Series Databook and Design Guide).
Current-mode drivers, with their high equivalent generator resistance, when used as bus drivers require a resistance equal to Z_{o} at each end of the bus to either power or ground as appropriate for the design.
A detailed discussion of digital transmission line design techniques is beyond the scope of this data sheet, but many good references are available from Texas Instruments and others. Extensive material is available in the Texas Instruments Interface Databook, the Fairchild F100K ECL 300 Series Databook and Design Guide and the Motorola MECL System Design Handbook.

Especially useful is the Texas Instruments Transmission Line RAPIDESIGNER© Sliderule and user manual AN905 (SNLA035).

Input Bussing
(Voltage Source Driver)

Output Bussing (Current Outputs)

Figure 21. Input/Output Busing
CONFIGURATION TRUTH TABLE

IA2	IA1	IA0	OA2	OA1	OAO	TRI	RES	LOAD	CNFG	CS	Condition of Device
X	X	X	X	X	X	X	X	X	X	0	NO CHANGE
X	X	X	X	X	X	0		X	X	1	Load I/P 0 to All O/Ps
X	X	X	X	X	X	1		X	X	1	TRI-STATE All O/P 0
X	X	X	0	0	0	1	0		0	1	TRI-STATE O/P 0
X	X	X	0	0	1	1	0		0	1	TRI-STATE O/P 1
X	X	X	0	1	0	1	0		0	1	TRI-STATE O/P 2
X	X	X	C	B	A	1	0		0	1	TRI-STATE O/P CBA
-	-	-	-	-	-	-	-	-	-	-	-
R	Q	P	C	B	A	0	0		0	1	Load I/P PQR to O/P CBA and Enable O/P CBA
-	-	-	-	-	-	-	-	-	-	-	-
0	0	0	0	0	0	0	0		0	1	Load I/P 0 to O/P 0
0	0	0	0	0	1	0	0		0	1	Load I/P 0 to O/P 1
0	0	0	0	1	0	0	0		0	1	Load I/P 0 to O/P 2
0	0	0	0	1	1	0	0		0	1	Load I/P 0 to O/P 3
0	0	0	1	0	0	0	0		0	1	Load I/P 0 to O/P 4
0	0	0	1	0	1	0	0		0	1	Load I/P 0 to O/P 5
0	0	0	1	1	0	0	0		0	1	Load I/P 0 to O/P 6
0	0	0	1	1	1	0	0		0	1	Load I/P 0 to O/P 7
0	0	1	0	0	0	0	0		0	1	Load I/P 1 to O/P 0
0	0	1	0	0	1	0	0		0	1	Load I/P 1 to O/P 1
0	0	1	0	1	0	0	0		0	1	Load I/P 1 to O/P 2
0	0	1	0	1	1	0	0		0	1	Load I/P 1 to O/P 3
-	-	-	-	-	-	-	-	-	-	-	-
0	0	1	1	1	1	0	0		0	1	Load I/P 1 to O/P 7
-	-	-	-	-	-	-	-	-	-	-	-
1	1	1	1	1	0	0	0		0	1	Load I/P 7 to O/P 6

CONFIGURATION TRUTH TABLE (continued)

1	1	1	1	1	1	0	0		0	1	Load I/P 7 to $\mathrm{O} / \mathrm{P} 7$
X	X	X	X	X	X	X	0	0		1	Activate New Configuration

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to Tl's terms and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in Tl's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.
TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, Tl's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.
Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessco		

[^0]: Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

