CMOS Analog Clock IC with Alarm Function

OVERVIEW

The CF5761 series are analog clock ICs with alarm functions that derive their timing from a standard 32.768 kHz oscillator element. Two kinds of alarm output are available and can be selected using a control pin. The series lineup comprises devices with various alarm patterns and motor outputs for a wide range of clock specifications. They support convenient functions, such as input chattering elimination circuit and power-on clear functions. They are fabricated using Molybdenum-gate CMOS process, realizing low power consumption.

FEATURES

- 32.768 kHz fundamental frequency oscillator
- Feedback resistor and oscillator capacitor C_{D} built-in
- Supports various alarms: piezo-alarm, electromagnetic speaker
- Snooze function
- Switchable alarm function using SEL pin
- Alarm auto-stop function (see series lineup)
- Input chattering elimination circuit (SEL, AI, SN)
- Test function
- 1.2 to 3.6 V operating supply voltage
- Chip form (CF5761××)
- Molybdenum-gate CMOS process

PAD LAYOUT

(Unit: $\mu \mathrm{m}$)

ORDERING INFORMATION

Device	Package
CF5761××	Chip form

SERIES LINEUP

		CF5761CA						CF5761EA						CF5761HA					
Built-in capacitance ${ }^{1}$	$\mathrm{C}_{\mathrm{G}}[\mathrm{pF}]$	4						4						4					
	$\mathrm{C}_{\mathrm{D}}[\mathrm{pF}]$	27						27						27					
Motor output	Active level	-						LOW						LOW					
	Needle period $\mathrm{t}_{\mathrm{CY}}[\mathrm{s}]$	0.0625 (8Hz sweep)						1						10					
	Pulsewidth tpw [ms]	62.5 (50\% duty)						23.4						13.7					
Al input	Active level	HIGH (pull-down)						HIGH (pull-down)						HIGH (pull-down)					
	Bounce delay [ms]	62.5						62.5						62.5					
SN input	Active level	HIGH (pull-down)						HIGH (pull-down)						HIGH (pull-down)					
	Snooze time $\mathrm{t}_{\text {SNZ }}[\mathrm{s}]$	300						300						300					
	Bounce delay [ms]	62.5						62.5						62.5					
Alarm output	SEL pin	LOW			HIGH			LOW			HIGH			LOW			HIGH		
	Application	Simple alarm			Simple alarm			Step tone alarm			Simple alarm			Simple alarm			Simple alarm		
		A01, AO3: tone AO2: motor bell			A01, AO3: tone AO2: Magnet speaker			A01, AO2: motor bell			A01, AO2: motor bell			AO1, AO3: tone			AO1, AO3: tone		
	Pin	A01	AO2	AO3															
	Active level	H	H	L	64 Hz clock output	H	32 Hz clock output	H	L	$\begin{gathered} 32 \mathrm{kHz} \\ \text { F } \\ \text { output } \end{gathered}$	H	L	$\begin{gathered} 32 \mathrm{kHz} \\ \text { F } \\ \text { output } \end{gathered}$	H	H	L	H	H	L
	Frequency fpw [kHz]	4	DC	4		2		-	-		DC	DC		4	-	4	4	-	4
	Modulation ${ }^{\mathrm{f}} \mathrm{CY}$ [Hz]	8	-	8		8		1+2+4+8	1+2+4+8		-	-		1+16	1+16	1+16		-	
		-	-	-		-		1+2+8	1+2+8		-	-		-	-	-		-	
		-	-	-		-		1+8	1+8		-	-		-	-	-		-	
		-	-	-		-		DC	DC		-	-		-	-	-		-	
	Duty [\%]	50	-	50		50		50	50		-	-		50	-	50		-	
		-	-	-		-		50	50		-	-		-	-	-		-	
		-	-	-		-		50	50		-	-		-	-	-		-	
		-	-	-		-		-	-		-	-		-	-	-		-	
	Step time [s]	-	-	-		-		0-8	0-8		-	-		-	-	-		-	
		-	-	-		-		8-16	8-16		-	-		-	-	-		-	
		-	-	-		-		16-24	16-24		-	-		-	-	-		-	
		-	-	-		-		24-	24-		-	-		-	-	-		-	
	Auto-stop [s]	None						None						None					
	$\mathrm{I}_{\mathrm{OH}}[\mathrm{mA}]$ min.	-0.9	-0.9	-0.9	-0.9	-0.9	-0.9	-0.9	-0.01	-0.01	-0.9	-0.01	-0.01	-0.9	-0.9	-0.9	-0.9	-0.9	-0.9
	$\mathrm{I}_{\text {OL }}$ [mA] min.	0.9	0.01	0.9	0.9	0.01	0.9	0.01	0.9	0.01	0.01	0.9	0.01	0.9	0.01	0.9	0.9	0.01	0.9

1. C_{G} and C_{D} built-in parasitic capacitance $\left(C_{G}=C_{D}=4 p F\right)$

		CF5761LB						CF5761MB						CF5761NB					
Built-in capacitance 1	$\mathrm{C}_{\mathrm{G}}[\mathrm{pF}]$	4						4						4					
	$\mathrm{C}_{\mathrm{D}}[\mathrm{pF}]$	34						34						34					
Motor output	Active level	LOW						-						LOW					
	Needle period $\mathrm{t}_{\mathrm{CY}}[\mathrm{s}]$	1						0.0625 (8Hz sweep)						1					
	Pulsewidth $\mathrm{t}_{\text {PW }}$ [ms]	31.3						62.5 (50\% duty)						23.4					
Al input	Active level	LOW (pull-up)						LOW (pull-up)						LOW (pull-up)					
	Bounce delay [ms]	62.5						62.5						62.5					
SN input	Active level	LOW (pull-up)						LOW (pull-up)						LOW (pull-up)					
	Snooze time ${ }_{\text {SNZ }}[\mathrm{s}]$	300						300						300					
	Bounce delay [ms]	62.5						62.5						62.5					
Alarm output	SEL pin	LOW			HIGH			LOW			HIGH			LOW			HIGH		
	Application	Step volume alarm			Simple alarm			Step volume alarm			Simple alarm			Step volume alarm			Step volume alarm		
		A01, AO2: tone			A01, AO2: motor bell			A01, A02: tone			A01, AO2: motor bell			A01, AO2: tone			A01, AO2: tone		
	Pin	A01	AO2	AO3															
	Active level	H	L	Not used	H	H	Not used	H	L	Not used	H	H	Not used	H	L	Not used	H	L	Not used
	Frequency fPW [kHz]	2	2		DC	DC		2	2		DC	DC		4	4		2	2	
	Modulation ${ }^{\mathrm{f}} \mathrm{CY}[\mathrm{Hz}]$	1+8	1+8		-	-		1+8	1+8		-	-		1+8	1+8		1+8	1+8	
		1+8	1+8		-	-		$1+8$	1+8		-	-		1+8	$1+8$		1+8	$1+8$	
		1+8	1+8		-	-		1+8	1+8		-	-		1+8	1+8		1+8	1+8	
		-	-		-	-		1+8	1+8		-	-		-	-		-	-	
	Duty [\%]	6.25	6.25		-	-		6.25	6.25		-	-		6.25	6.25		12.5	12.5	
		12.5	12.5		-	-		12.5	12.5		-	-		12.5	12.5		25	25	
		50	50		-	-		25	25		-	-		50	50		50	50	
		-	-		-	-		50	50		-	-		-	-		-	-	
	Step time [s]	0-8	0-8		-	-		0-4	0-4		-	-		0-8	0-8		0-8	0-8	
		8-16	8-16		-	-		4-8	4-8		-	-		8-16	8-16		8-16	8-16	
		16-	16-		-	-		8-12	8-12		-	-		16-	16-		16-	16-	
		-	-		-	-		12-	12-		-	-		-	-		-	-	
	Auto-stop [s]	300						300						300					
	$\mathrm{l}_{\mathrm{OH}}[\mathrm{mA}]$ min.	-0.9	-0.9	-0.9	-0.9	-0.9	-0.9	-0.9	-0.9	-0.9	-0.9	-0.9	-0.9	-0.9	-0.9	-0.9	-0.9	-0.9	-0.9
	${ }^{1} \mathrm{OL}$ [mA] min.	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9

1. C_{G} and C_{D} built-in parasitic capacitance $\left(\mathrm{C}_{\mathrm{G}}=\mathrm{C}_{\mathrm{D}}=4 \mathrm{pF}\right)$

BLOCK DIAGRAM

PAD DESCRIPTION and DIMENSIONS

Number	Name	1/0	Function	Pad dimensions	
				$\mathrm{X}[\mu \mathrm{m}]$	$\mathrm{Y}[\mu \mathrm{m}]$
1	01	0	Movement motor drive output 1 (CMOS output)	155	1215
2	02	0	Movement motor drive output 2 (CMOS output)	155	1023
3	VSS	-	Ground	155	835
4	AO2	0	Alarm output 2	155	567
5	A01	0	Alarm output 1	155	155
6	A03	0	Alarm output 3	351	155
7	SEL	1	Alarm function select. Pull-down resistor built-in	583	155
8	XTN	0	Crystal oscillator output. Oscillator capacitance C_{D} built-in	1255	166
9	XT	1	Crystal oscillator input. Crystal connected between XT and XTN	1255	399
10	SN	1	Snooze input Pull-down resistor built-in (CF5761CA, EA, HA) Pull-up resistor built-in (CF5761LB, MB, NB)	1255	587
11	AI	1	Alarm input Pull-down resistor built-in (CF5761CA, EA, HA) Pull-up resistor built-in (CF5761LB, MB, NB)	1255	821
12	T1	I/O	Test pin	1217	1215
13	VDD	-	Supply	1029	1215

SPECIFICATIONS

Absolute Maximum Ratings

Parameter	Symbol	Condition	Rating	Unit
Supply voltage range	$\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{S S}$		-0.3 to 5.0	V
Input voltage range	V_{IN}		$\mathrm{V}_{S S}$ to V_{DD}	V
Operating temperature range	$\mathrm{T}_{\mathrm{opr}}$	-30 to 80	${ }^{\circ} \mathrm{C}$	
Storage temperature range	$\mathrm{T}_{\text {stg }}$		-65 to 150	${ }^{\circ} \mathrm{C}$

Electrical Characteristics

1.5V operation

$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=1.5 \mathrm{~V}, \mathrm{X}^{\prime} \operatorname{tal}\left(\mathrm{f}_{0}=32.768 \mathrm{kHz}, \mathrm{C}_{\mathrm{I}}=35 \mathrm{k} \Omega\right.$ max, $\left.\mathrm{C}_{\mathrm{G}}=20 \mathrm{pF}\right)$ unless otherwise noted

Parameter	Symbol	Condition	Rating			Unit
			min	typ	max	
Operating voltage	$V_{D D}$		1.2	1.5	3.6	V
Oscillator startup time ${ }^{1}$	t_{1}	$V_{D D}=1.2 \mathrm{~V}$	-	-	5.0	S
Frequency voltage characteristic	$\Delta \mathrm{f} / \mathrm{f}$		-	-	1.0	ppm/0.1V
Current consumption ${ }^{1}$	$I_{D D}$	No output load	-	0.5	1.0	$\mu \mathrm{A}$
		No output load, F output	-	0.9	1.8	
01, 02 motor output current ${ }^{2}$	IOUT	$\mathrm{V}_{\mathrm{DD}}=1.2 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=400 \Omega$	2.40	2.55	-	mA
AI HIGH-level input current	$\mathrm{I}_{\mathrm{H} 1}$	$\mathrm{V}_{\mathrm{DD}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=1.5 \mathrm{~V}$	0.6	3	7.5	$\mu \mathrm{A}$
AI LOW-level input current	$\mathrm{I}_{\text {LL1 }}$	$\mathrm{V}_{\mathrm{DD}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V}$	0.6	3	7.5	$\mu \mathrm{A}$
SN, SEL HIGH-level input current	$\mathrm{I}_{\mathrm{H} 2}$	$\mathrm{V}_{\mathrm{DD}}=1.5 \mathrm{~V}, \mathrm{~V}_{1 \mathrm{H}}=1.5 \mathrm{~V}$	0.2	1	2	$\mu \mathrm{A}$
	$\mathrm{I}_{\mathrm{H} 3}$	$\mathrm{V}_{\mathrm{DD}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=0.5 \mathrm{~V}$	9	18	36	
SN LOW-level input current	1/L2	$\mathrm{V}_{\mathrm{DD}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V}$	0.2	1	2	$\mu \mathrm{A}$
	ILL3	$\mathrm{V}_{\mathrm{DD}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=1.0 \mathrm{~V}$	9	18	36	
AO1, AO2, AO3 LOW-level output current ${ }^{3}$	IOL1	$\mathrm{V}_{\mathrm{DD}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=0.75 \mathrm{~V}$	900	2000	-	$\mu \mathrm{A}$
	$\mathrm{l}_{\text {OL2 }}$	$\mathrm{V}_{\mathrm{DD}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=0.75 \mathrm{~V}$	10	30	100	
AO1, AO2, AO3 HIGH-level output current ${ }^{3}$	IOH 1	$\mathrm{V}_{\mathrm{DD}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=0.75 \mathrm{~V}$	900	2000	-	$\mu \mathrm{A}$
	$\mathrm{I}_{\mathrm{OH} 2}$	$\mathrm{V}_{\mathrm{DD}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=0.75 \mathrm{~V}$	10	30	100	
T1 LOW-level output current	Iolt	$\mathrm{V}_{\mathrm{DD}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=1.5 \mathrm{~V}$	5	10	20	$\mu \mathrm{A}$
T1 HIGH-level output current	$\mathrm{I}_{\text {OHT }}$	$\mathrm{V}_{\mathrm{DD}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=0 \mathrm{~V}$	5	10	20	$\mu \mathrm{A}$
F output voltage ${ }^{4}$	V_{F}	$V_{D D}=1.2 \mathrm{~V}$, output capacitance $C_{L}=50 \mathrm{pF}$	0.4	-	-	V
Built-in capacitance	$C_{\text {D }}$		See series lineup			pF

1. Measured using standard circuits.
2. R_{L} is the resistance of the motor coil connected between O 1 and O 2 .
3. The rating varies depending on the device selected. Please refer to the series lineup table for details.
4. F output voltage is the difference voltage, with load capacitor C_{L} connected between F and VSS pins, between $0.5 \mathrm{~V}_{D D}$ and the peak voltage.

3.0V operation

$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=3.0 \mathrm{~V}, \mathrm{X}$ 'tal $\left(\mathrm{f}_{0}=32.768 \mathrm{kHz}, \mathrm{C}_{\mathrm{I}}=35 \mathrm{k} \Omega\right.$ max, $\left.\mathrm{C}_{\mathrm{G}}=20 \mathrm{pF}\right)$ unless otherwise noted

Parameter	Symbol	Condition	Rating			Unit
			min	typ	max	
Operating voltage	V_{DD}		1.2	3.0	3.6	V
Oscillator startup time ${ }^{1}$	t_{1}	$V_{D D}=2.4 \mathrm{~V}$	-	-	5.0	s
Frequency voltage characteristic	$\Delta \mathrm{f} / \mathrm{f}$		-	-	1.0	ppm/0.1V
Current consumption ${ }^{1}$	$I_{D D}$	No output load	-	0.6	1.2	$\mu \mathrm{A}$
		No output load, F output	-	1.3	2.6	
01, 02 motor output current ${ }^{2}$	Iout	$\mathrm{V}_{\mathrm{DD}}=2.4 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$	2.26	-	-	mA
AI HIGH-level input current	$\mathrm{I}_{\mathrm{H} 1}$	$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=3.0 \mathrm{~V}$	0.6	3	7.5	$\mu \mathrm{A}$
AI LOW-level input current	$\mathrm{I}_{\text {L1 }}$	$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}, \mathrm{~V}_{\text {IL }}=0 \mathrm{~V}$	0.6	3	7.5	$\mu \mathrm{A}$
SN, SEL HIGH-level input current	$\mathrm{I}_{\mathrm{H} 2}$	$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=3.0 \mathrm{~V}$	0.2	1	2	$\mu \mathrm{A}$
	$\mathrm{I}_{\mathrm{H} 3}$	$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=0.5 \mathrm{~V}$	25	50	100	
SN LOW-level input current	1/L2	$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V}$	0.2	1	2	$\mu \mathrm{A}$
	IIL3	$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=2.5 \mathrm{~V}$	25	50	100	
AO1, AO2, AO3 LOW-level output current ${ }^{3}$	$\mathrm{l}_{0,1}$	$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=1.5 \mathrm{~V}$	900	-	-	$\mu \mathrm{A}$
	$\mathrm{l}_{\text {OL2 }}$	$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=1.5 \mathrm{~V}$	10	-	-	
AO1, AO2, AO3 HIGH-level output current ${ }^{3}$	$\mathrm{I}_{\mathrm{OH} 1}$	$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=1.5 \mathrm{~V}$	900	-	-	$\mu \mathrm{A}$
	$\mathrm{I}_{\mathrm{OH} 2}$	$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=1.5 \mathrm{~V}$	10	-	-	
T1 LOW-level output current	IoLt	$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=3.0 \mathrm{~V}$	-	20	-	$\mu \mathrm{A}$
T1 HIGH-level output current	$\mathrm{I}_{\text {OHT }}$	$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=0 \mathrm{~V}$	-	20	-	$\mu \mathrm{A}$
F output voltage ${ }^{4}$	V_{F}	$V_{D D}=2.4 \mathrm{~V}$, output capacitance $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	0.8	-	-	V
Built-in capacitance	$C_{\text {D }}$		See series lineup			pF

1. Measured using standard circuits.
2. R_{L} is the resistance of the motor coil connected between O 1 and O 2 .
3. The rating varies depending on the device selected. Please refer to the series lineup table for details.
4. F output voltage is the difference voltage, with load capacitor C_{L} connected between F and VSS pins, between $0.5 \mathrm{~V}_{\mathrm{DD}}$ and the peak voltage.

Measurement Circuit

X^{\prime} tal $f_{0}=32.768 \mathrm{kHz}, \mathrm{C}_{\mathrm{I}}=35 \mathrm{k} \Omega \max , \mathrm{C}_{\mathrm{L}}=12.5 \mathrm{pF}, \mathrm{C}_{0}=1.3 \mathrm{pF}, \mathrm{C}_{1}=2.6 \mathrm{pF}, \mathrm{C}_{\mathrm{G}}=20 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=400 \Omega$ or $1 \mathrm{k} \Omega$

FUNCTIONAL DESCRIPTION

Motor Output

The CF5761 series comprise devices with different step movement and sweep movement cycles and pulsewidths.

Parameter	CF5761CA	CF5761EA	CF5761HA	CF5761LB	CF5761MB	CF5761NB
Active level	-	LOW	LOW	LOW	-	LOW
Movement cycle $\mathrm{t}_{\mathrm{CY}}[\mathrm{s}]$	0.0625	1	10	1	0.0625	1
Pulsewidth tPW $[\mathrm{ms}]$	62.5	23.4	13.7	31.3	62.5	23.4
Movement	Sweep	Step	Step	Step	Sweep	Step

Step movement

Sweep movement

Alarm Control

The alarm is controlled using AI, SN, and SEL inputs. These pins have built-in chattering elimination circuits to prevent incorrect operation due to input chatter. The alarm output timing in response to these inputs is shown in the following figure.

Input	Function	Input chatter elimination
AI	Alarm control input. When Al is active, the specified alarm pattern is output on $\mathrm{AO1}, \mathrm{AO} 2$ and AO 3 .	$\mathrm{t}_{\mathrm{ON}}<62.5 \mathrm{~ms}$, the input is not accepted. $\mathrm{t}_{\mathrm{ON}}>125 \mathrm{~ms}$, the input is accepted. $62.5 \mathrm{~ms} \leq \mathrm{t}_{\mathrm{ON}} \leq 125 \mathrm{~ms}$, the input state is undefined.
SN	Snooze function control input. When the snooze input is accepted, the snooze time count begins. The snooze time is 300 s .	
SEL	Alarm function select input. Selects one of two alarm patterns. When SEL is switched (from HIGH to LOW, or LOW to HIGH), the snooze state and auto-stop function is released, and the alarm signal is output.	

Alarm Modes

The CF5761 series provide several alarm modes and various alarm pattern outputs for a wide range of clock specifications, as described in the following table.

Alarm mode	Mode description	Output	Device
Simple alarm	A fixed alarm pattern is repeatedly rung (basic mode).	Motor bell Piezo-electric speaker Electromagnetic speaker	CF5761CA/EA/HA/LB/MB
Step tone modulated alarm	At fixed intervals, the alarm pattern changes, increasing the tone pitch with each step.	Motor bell	CF5761EA
Step volume modulated alarm	At fixed intervals, using a fixed alarm pattern, the output waveform duty changes, increasing the volume with each step.	Piezo-electric speaker Electromagnetic speaker	CF5761LB/MB/NB

The alarm pattern timing for each device in the CF5761 series is shown in the series lineup.
The CF5761HA has a special modulated alarm pattern when SEL is HIGH, as shown in the following figure. Outputs AO1 and AO3 have a frequency modulated alarm waveform output at the alarm fundamental frequency of $4 \mathrm{kHz}(4096 \mathrm{~Hz})$. The modulation pattern is output on AO 2 .

Power-ON Initialization

The CF5761 series are reset to the following conditions after power is applied.

- AI, SN, SEL input state

These inputs are reset to LOW, except where the device has an active-LOW input in which case it is reset to HIGH. See the series lineup table.

- O1, O2

In step movement devices, both outputs are HIGH and subsequent output occurs on O1. In sweep movement devices, O 1 is reset LOW and O 2 is reset HIGH, and output starts immediately.

- $\mathrm{AO} 1, \mathrm{AO} 2, \mathrm{AO} 3$

No output after reset. However, F output (CF5761EA: 32 kHz on AO3) and clock output start immediately.

- Test mode

Test mode is released after reset. Note that after the oscillator starts, the input state of each pin is read and operation commences accordingly.

Test Function

The CF5761 series have a test mode of operation where the output cycles are compressed. T1 has a built-in chattering elimination circuit to prevent incorrect operation due to input chatter. When T1 goes HIGH for an interval of 31.25 ms or greater, test mode is invoked. When T1 becomes open circuit, normal mode operation resumes immediately and a 256 Hz signal is output on T 1 .

T1	Function
	Motor outputs: In step movement devices, the output runs 16 times faster with normal pulsewidth. In sweep movement devices, the output runs 16 times faster with 50\% duty pulsewidth. Alarm outputs: Alarm operates at the same frequency with modulation frequency 16 times faster and step output changes 8 times faster (CF5761EA, LB, NB) or 4 times faster (CF5761MB). Snooze time, auto-stop time $1: 281.25 m s ~(C F 5761 E A, ~ L B, ~ N B) ~ o r ~ 562.5 m s ~(C F 5761 M B) ~ i n ~ s t e p ~ o u t p u t ~ a l a r m ~ m o d e, ~ a n d ~$ $140.625 m s ~ i n ~ o t h e r ~ m o d e s . ~$

1. The auto-stop time applies only to CF5761 versions that support the auto-stop function. See the series lineup table.

TYPICAL APPLICATION CIRCUITS

Piezo-electric speaker

Motor bell

Electromagnetic speaker

Melody alarm

NIPPON PRECISION CIRCUITS INC. reserves the right to make changes to the products described in this data sheet in order to improve the design or performance and to supply the best possible products. Nippon Precision Circuits Inc. assumes no responsibility for the use of any circuits shown in this data sheet, conveys no license under any patent or other rights, and makes no claim that the circuits are free from patent infringement. Applications for any devices shown in this data sheet are for illustration only and Nippon Precision Circuits Inc. makes no claim or warranty that such applications will be suitable for the use specified without further testing or modification. The products described in this data sheet are not intended to use for the apparatus which influence human lives due to the failure or malfunction of the products. Customers are requested to comply with applicable laws and regulations in effect now and hereinafter, including compliance with export controls on the distribution or dissemination of the products. Customers shall not export, directly or indirectly, any products without first obtaining required licenses and approvals from appropriate government agencies.

NIPPON PRECISION CIRCUITS INC.
4-3, Fukuzumi 2-chome, Koto-ku,
Tokyo 135-8430, Japan
Telephone: +81-3-3642-6661
Facsimile: +81-3-3642-6698
http://www.npc.co.jp/
Email: sales@npc.co.jp

