CD4541BM/CD4541BC Programmable Timer

General Description

The CD4541B Programmable Timer is designed with a 16-stage binary counter, an integrated oscillator for use with an external capacitor and two resistors, output control logic, and a special power-on reset circuit. The special features of the power-on reset circuit are first no additional static power consumption and second, the part functions across the full voltage range ($3-15 \mathrm{~V}$) whether power-on reset is enabled or disabled.

Timing and the counter are initialized by turning on power, if the power-on reset is enabled. When the power is already on, an external reset pulse will also initialize the timing and counter. After either reset is accomplished, the oscillator frequency is determined by the external RC network. The 16 -stage counter divides the oscillator frequency by any of 4 digitally controlled division ratios.

Features

- Available division ratios $2^{8}, 2^{10}, 2^{13}$, or 2^{16}
- Increments on positive edge clock transitions
- Built-in low power RC oscillator ($\pm 2 \%$ accuracy over temperature range and $\pm 10 \%$ supply and $\pm 3 \%$ over processing @ < 10 kHz)
- Oscillator frequency range $\approx D C$ to 100 kHz
- Oscillator may be bypassed if external clock is available (apply external clock to pin 3)
- Automatic reset initializes all counters when power turns on
- External master reset totally independent of automatic reset operation
- Operates as 2^{n} frequency divider or single transition timer
- Q/ \bar{Q} select provides output logic level flexibility
- Reset (auto or master) disables oscillator during resetting to provide no active power dissipation
- Clock conditioning circuit permits operation with very slow clock rise and fall times
- Wide supply voltage range -3.0 V to 15 V
- High noise immunity -0.45 V DD (typ.)
- $5 \mathrm{~V}-10 \mathrm{~V}-15 \mathrm{~V}$ parametric ratings
- Symmetrical output characteristics
a Maximum input leakage $1 \mu \mathrm{~A}$ at 15 V over full temperature range
m High output drive (pin 8) min. one TTL load

Logic Diagram

Dual-In-Line Package

Absolute Maximum Ratings (Notes 1 \& 2)
Supply Voltage, $V_{D D}$
-0.5 to +18 V
Input Voltage, V_{IN}
Storage Temperature Range, T_{S}
Package Dissipation, P_{D}
-0.5 to $\mathrm{V}_{\mathrm{DD}}+0.5 \mathrm{~V}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ 500 mW
Lead Temperature, T_{L} (soldering, 10 seconds) $300^{\circ} \mathrm{C}$

Recommended Operating Conditions (Note 2)

Supply Voltage, $V_{D D}$	3 to 15 V
Input Voltage, $V_{\text {VI }}$	0 to $V_{D D}$
Operating Temperature Range	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
CD4541BM	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

DC Electrical Characteristics (Note 2) - CD4541BM

DC Electrical Characteristics (Note 2) - CD4541BC

Parameter	Conditions	$-55^{\circ} \mathrm{C}$		$25^{\circ} \mathrm{C}$			$125^{\circ} \mathrm{C}$		Units
		Min.	Max.	Min.	Typ.	Max.	Min.	Max.	
$I_{\text {DD }}$ Quiescent Device Current	$\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \\ & V_{D D}=15 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 20 \\ & 40 \\ & 80 \end{aligned}$		$\begin{aligned} & 0.005 \\ & 0.010 \\ & 0.015 \end{aligned}$	$\begin{aligned} & 20 \\ & 40 \\ & 80 \end{aligned}$		$\begin{aligned} & 150 \\ & 300 \\ & 600 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$
VOL Low Level Output Voltage	$\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \quad\left\|I_{O}\right\|<1 \mu \mathrm{~A} \\ & V_{D D}=15 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$		$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$		$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$	$\begin{aligned} & V \\ & V \\ & V \end{aligned}$
V_{OH} High Level Output Voltage	$\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \quad \mid l O l<1 \mu \mathrm{~A} \\ & V_{D D}=15 \mathrm{~V} \end{aligned}$	$\begin{gathered} 4.95 \\ 9.95 \\ 14.95 \end{gathered}$		$\begin{gathered} 4.95 \\ 9.95 \\ 14.95 \end{gathered}$	$\begin{gathered} 5 \\ 10 \\ 15 \end{gathered}$		$\begin{gathered} 4.95 \\ 9.95 \\ 14.95 \end{gathered}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
VIL Low Level Input Voltage	$\begin{aligned} & V_{D D}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V} \text { or } 4.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1.0 \mathrm{~V} \text { or } 9.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1.5 \mathrm{~V} \text { or } 13.5 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \end{aligned}$		$\begin{aligned} & 2 \\ & 4 \\ & 6 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \end{aligned}$		$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & v \\ & v \\ & v \end{aligned}$
V_{IH} High Level Input Voltage	$\begin{aligned} & V_{D D}=5 \mathrm{~V}, V_{O}=0.5 \mathrm{~V} \text { or } 4.5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1.0 \mathrm{~V} \text { or } 9.0 \mathrm{~V} \\ & V_{D D}=15 \mathrm{~V}, V_{O}=1.5 \mathrm{~V} \text { or } 13.5 \mathrm{~V} \end{aligned}$	$\begin{gathered} 3.5 \\ 7.0 \\ 11.0 \end{gathered}$		$\begin{gathered} 3.5 \\ 7.0 \\ 11.0 \end{gathered}$	$\begin{aligned} & 3 \\ & 6 \\ & 9 \end{aligned}$		3.5 7.0 11.0		$\begin{aligned} & V \\ & V \\ & V \end{aligned}$
IoL Low Level Output Current	$\begin{aligned} & V_{D D}=5 \mathrm{~V}, V_{O}=0.4 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V}, V_{O}=0.5 \mathrm{~V} \\ & V_{D D}=15 \mathrm{~V}, V_{O}=1.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 2.32 \\ & 3.18 \\ & 12.4 \end{aligned}$		$\begin{aligned} & 1.96 \\ & 2.66 \\ & 10.4 \end{aligned}$	$\begin{gathered} 3.6 \\ 9.0 \\ 34.0 \end{gathered}$		1.6 2.18 8.50		$\begin{aligned} & m A \\ & m A \\ & m A \end{aligned}$

DC Electrical Characteristics (Note 2) - CD4541BC (Cont'd)

Parameter		Conditions	$-55^{\circ} \mathrm{C}$		$25^{\circ} \mathrm{C}$			$125^{\circ} \mathrm{C}$		Units	
		Min.	Max.	Min.	Typ.	Max.	Min.	Max.			
	High Level Output Current		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V}$	5.1		4.27	13.0		3.5		mA
		$V_{D D}=10 \mathrm{~V}, \mathrm{~V}_{0}=9.5 \mathrm{~V}$	2.69		2.25	8.0		1.85		mA	
		$V_{D D}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=13.5 \mathrm{~V}$	10.5		8.8	30.0		7.22		mA	
	Input Current	$V_{D D}=15 \mathrm{~V}, V_{1 N}=0 \mathrm{~V}$		-0.3		-10^{-5}	-0.3		-1.0	$\mu \mathrm{A}$	
		$V_{D D}=15 \mathrm{~V}, \mathrm{~V}_{1 \mathrm{~N}}=15 \mathrm{~V}$		0.3		10^{-5}	0.3		1.0	$\mu \mathrm{A}$	

AC Electrical Characteristics $T_{A}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (refer to test circuits)

	Parameter	Conditions	Min.	Typ.	Max.	Units
${ }^{\text {t }}$ th	Output Rise Time	$\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \\ & V_{D D}=15 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 50 \\ & 30 \\ & 25 \end{aligned}$	$\begin{gathered} 200 \\ 100 \\ 80 \end{gathered}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \\ & \text { ns } \end{aligned}$
${ }^{\text {t }}$ HL	Output Fall Time	$\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \\ & V_{D D}=15 \mathrm{~V} \end{aligned}$,	$\begin{aligned} & 50 \\ & 30 \\ & 25 \end{aligned}$	$\begin{gathered} 200 \\ 100 \\ 80 \end{gathered}$	ns ns ns
$t_{\text {PLH }}$, $t_{\text {PHL }}$	Turn-Off, Turn-On Propagation Delay, Clock to Q (2^{8} Output)	$\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \\ & V_{D D}=15 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 1.8 \\ & 0.6 \\ & 0.4 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 1.5 \\ & 1.0 \end{aligned}$	$\mu \mathrm{S}$ $\mu \mathrm{S}$ $\mu \mathrm{S}$
$t_{\text {PHL }}$ $t_{\text {PLH }}$	Turn-On, Turn-Off Propagation Delay, Clock to $Q\left(2^{16}\right.$ Output)	$\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \\ & V_{D D}=15 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 3.2 \\ & 1.5 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 3.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & \mu \mathrm{S} \\ & \mu \mathrm{~S} \\ & \mu \mathrm{~S} \end{aligned}$
${ }_{\text {t }} \mathbf{W H}(\mathrm{CL})$	Clock Pulse Width	$\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \\ & V_{D D}=15 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 400 \\ & 200 \\ & 150 \end{aligned}$	$\begin{gathered} 200 \\ 100 \\ 70 \end{gathered}$		ns ns ns
f_{CL}	Clock Pulse Frequency	$\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \\ & V_{D D}=15 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 2.5 \\ & 6.0 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 3.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{MHz} \\ & \mathrm{MHz} \end{aligned}$
twh(R)	MR Pulse Width	$\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \\ & V_{D D}=15 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 400 \\ & 200 \\ & 150 \end{aligned}$	$\begin{aligned} & 170 \\ & 75 \\ & 50 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \end{aligned}$
C_{1}	Average Input Capacitance	Any Input		5.0	7.5	pF
$\mathrm{C}_{\text {PD }}$	Power Dissipation Capacitance (Note 3)			100		pF

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: $\mathrm{V}_{\mathrm{SS}}=\mathrm{OV}$ unless otherwise specified.
Note 3: $\mathrm{C}_{\text {PD }}$ determines the no load AC power consumption of any CMOS device. For complete explanation, see $54 \mathrm{C} / 74 \mathrm{C}$ family characteristics application note AN-90.

Truth Table

Pin	State	
	0	1
5	Auto Reset Operating	Auto Reset Disabled
6	Timer Operational	Master Reset On
9	Output Initially Low after Reset	Output Initially High after Reset
10	Single Cycle Mode	Recycle Mode

Division Ratio Table

A	B	Number of Counter Stages \boldsymbol{n}	Count $\mathbf{2 n}^{\mathbf{n}}$
0	0	13	8192
0	1	10	1024
1	0	8	256
1	1	16	65536

Operating Characteristics

With Auto Reset pin set to a " 0 " the counter circuit is initialized by turning on power. Or with power already on, the counter circuit is reset when the Master Reset pin is set to a " 1 ". Both types of reset will result in synchronously resetting all counter stages independent of counter state.

The RC oscillator frequency is determined by the external RC network, i.e.:

$$
f=\frac{1}{2.3 R_{t c} C_{t c}} \text { if }(1 \mathrm{kHz} \leqslant f \leqslant 100 \mathrm{kHz})
$$

and $R_{S} \approx 2 R_{t c}$ where $R_{S} \geqslant 10 \mathrm{k} \Omega$
The time select inputs (A and B) provide a two-bit address to output any one of four counter stages ($2^{8}, 2^{10}, 2^{13}$, and 2^{16}). The 2^{n} counts as shown in the Division Ratio Table represent the Q output of the Nth stage of the counter. When A is " 1 ", 2^{16} is selected for both states of B.

Power Dissipation Test Circuit and Waveform

However, when B is " 0 ", normal counting is interrupted and the 9th counter stage receives its clock directly from the oscillator (i.e., effectively outputting 2^{8}).

The Q / \bar{Q} select output control pin provides for a choice of output level. When the counter is in a reset condition and Q / \bar{Q} select pin is set to a " 0 " the Q output is a " 0 ". Correspondingly, when Q / \bar{Q} select pin is set to a " 1 " the Q output is a " 1 ".

When the mode control pin is set to a " 1 ", the selected count is continually transmitted to the output. But, with mode pin " 0 " and after a reset condition the RS flip-flop resets (see Logic Diagram), counting commences and after 2^{n-1} counts the RS flip-flop sets which causes the output to change state. Hence, after another 2^{n-1} counts the output will not change. Thus, a Master Reset pulse must be applied or a change in the mode pin level is required to reset the single cycle operation.

Oscillator Circuit Using RC Configuration

TA, Ambient temperature (${ }^{\circ} \mathrm{C}$)
SOLID LINE $=$ RTC $=56 \mathrm{k} \Omega, \mathrm{RS}=1 \mathrm{k} \Omega$ AND $\mathrm{C}=1000 \mathrm{pF}$ $f=10.2 \mathrm{kHz}$ @ $\mathrm{VDD}_{D}=10 \mathrm{~V}$ AND $\mathrm{T}_{A}=25^{\circ} \mathrm{C}$ DASHED LINE $=$ RTC $=56 \mathrm{k} \Omega, \mathrm{RS}=120 \mathrm{k} \Omega$ AND $\mathrm{C}=1000 \mathrm{pF}$ $\mathrm{I}=7.75 \mathrm{kHz}$ @ $\mathrm{V}_{D D}=10 \mathrm{~V}$ AND $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

RC Oscillator Frequency as a Function of $R_{\text {TC }}$ and C

LINE A: I AS A FUNCTION OF C AND (RTC = $56 \mathrm{k} \Omega ; \mathrm{RS}=120 \mathrm{k}$) LINE B: I AS A FUNCTION OF RTC AND ($C=1000 \mathrm{pF}$; $\mathrm{RS}=2 \mathrm{ATC}$)

