CD4066BM/CD4066BC Quad Bilateral Switch

General Description

The CD4066BM/CD4066BC is a quad bilateral switch intended for the transmission or multiplexing of analog or digital signals. It is pin-for-pin compatible with CD4016BM/CD4016BC, but has a much lower "ON" resistance, and "ON" resistance is relatively constant over the input-signal range.

Features

- Wide supply voltage range
- High noise immunity
- Wide range of digital and analog switching
■ "ON" resistance for 15 V operation
80Ω
- Matched "ON" resistance

3 V to 15 V
$0.45 \mathrm{~V}_{\mathrm{DD}}$ (typ.)
± 7.5 VPEAK over 15 V signal input

- "ON" resistance flat over peak-to-peak signal range
- High "ON" ${ }^{\prime \prime}$ "OFF' output voltage ratio
- High degree linearity

65 dB (typ.)
@ $\mathrm{f}_{\mathrm{is}}=10 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$
0.1% distortion (typ.) $@ \mathfrak{f}_{\text {is }}=1 \mathrm{kHz}, \mathrm{V}_{\text {is }}=5 \mathrm{~V}_{\mathrm{p} . \mathrm{p}}$, $V_{D D}-V_{S S}=10 \mathrm{~V}, R_{L}=10 \mathrm{k} \Omega$

Schematic and Connection Diagrams

TOP VIEW

Absolute Maximum Ratings
(Notes 1 and 2)
$V_{D D}$ Supply Voltage
VIN Input Voltage
T_{S} Storage Temperature Range
P_{D} Package Dissipation
T_{L} Lead Temperature (Soldering, 10 seconds)
-0.5 V to +18 V
-0.5 V to $\mathrm{V}_{\mathrm{DD}}+0.5 \mathrm{~V}$ $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ 500 mW $300^{\circ} \mathrm{C}$
(Note 2)
$V_{\text {DD }}$ Supply Voltage
3 V to 15 V $O V$ to $V_{D D}$
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

DC Electrical Characteristics CD4066BM (Note 2)

Parameter		Conditions	$-55^{\circ} \mathrm{C}$		$25^{\circ} \mathrm{C}$			$125{ }^{\circ} \mathrm{C}$		Units	
		Min	Max	Min	Typ	Max	Min	Max			
	Quiescent Device Current		$V_{D D}=5 \mathrm{~V}$		0.25		0.01	0.25		7.5	$\mu \mathrm{A}$
		$V_{D D}=10 \mathrm{~V}$		0.5		0.01	0.5		15	$\mu \mathrm{A}$	
		$V_{D D}=15 \mathrm{~V}$		1.0		0.01	1.0		30	$\mu \mathrm{A}$	

Signal Inputs and Outputs

DC Electrical Characteristics CD4066BC (Note 2)

DC Electrical Characteristics (Cont'd.) CD4066BC (Note 2)

Parameter	Conditions	$-40^{\circ} \mathrm{C}$		$25^{\circ} \mathrm{C}$			$85^{\circ} \mathrm{C}$		Units
		Min	Max	Min	Typ	Max	Min	Max	
Signal Inputs and Outputs									
RON "ON" Resistance	$\begin{aligned} & R_{L}=10 \mathrm{k} \Omega \text { to } \frac{V_{D D}-V_{S S}}{2} \\ & V_{C}=V_{D D}, V_{S S} \text { to } V_{D D} \end{aligned}$								
	$V_{D D}=5 \mathrm{~V}$		2000		270	2500		3200	Ω
	$V_{D D}=10 \mathrm{~V}$		450		120	500		520	Ω
	$V_{D D}=15 \mathrm{~V}$		250		80	280		300	Ω
$\triangle R_{O N} \quad \triangle$ "ON" Resistance Between Any 2 of 4 Switches	$R_{L}=10 \mathrm{k} \Omega \text { to } \frac{V_{D D}-V_{S S}}{2}$								
	$V_{C C}=V_{D D}, V_{I S}=V_{S S} \text { to } V_{D D}$								
	$V_{D D}=10 \mathrm{~V}$				10				Ω
	$V_{D D}=15 \mathrm{~V}$				5				Ω
IIS Input or Output Leakage Switch "OFF"	$V_{C}=0$		± 50		± 0.1	± 50		± 200	nA

Control Inputs

VILC Low Level Input Voltage	$\begin{aligned} & V_{I S}=V_{S S} \text { and } V_{D D} \\ & V_{O S}=V_{D D} \text { and } V_{S S} \\ & I_{I S}= \pm 10 \mu \mathrm{~A} \\ & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \\ & V_{D D}=15 \mathrm{~V} \end{aligned}$	1.5 3.0 4.0		$\begin{aligned} & 2.25 \\ & 4.5 \\ & 6.75 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \end{aligned}$	1.5 3.0 4.0	V v v
VIHC High Level Input Voltage	$\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \text { (See note 6) } \\ & V_{D D}=15 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 3.5 \\ & 7.0 \\ & 11.0 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 7.0 \\ & 11.0 \end{aligned}$	$\begin{aligned} & 2.75 \\ & 5.5 \\ & 8.25 \end{aligned}$		$\begin{aligned} & 3.5 \\ & 7.0 \\ & 11.0 \end{aligned}$	$\begin{aligned} & v \\ & v \\ & v \end{aligned}$
IIN Input Current	$\begin{aligned} & V_{D D}-V_{S S}=15 \mathrm{~V} \\ & \mathrm{~V}_{D D} \geqslant \mathrm{~V}_{I S} \geqslant V_{S S} \\ & \mathrm{~V}_{\mathrm{DD}} \geqslant \mathrm{~V}_{\mathrm{C}} \geqslant \mathrm{~V}_{S S} \end{aligned}$	± 0.3		$\pm 10^{-5}$	± 0.3	± 1.0	$\mu \mathrm{A}$

AC Electrical Characteristics $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{t}}=20$ ns and $\mathrm{V}_{S S}=\mathrm{OV}$ unless otherwise specified

Parameter		Conditions	Min	Typ	Max	Units
tPHL, tPLH	Propagation Delay Time Signal Input to Signal Output	$\begin{aligned} & V_{C}=V_{D D}, C_{L}=50 \mathrm{pF}, \text { (Figure 1) } \\ & R_{\mathrm{L}}=200 \mathrm{k} \\ & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \\ & V_{D D}=15 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 25 \\ & 15 \\ & 10 \end{aligned}$	$\begin{aligned} & 55 \\ & 35 \\ & 25 \end{aligned}$	ns ns ns
tPZH, tPZL	Propagation Delay Time Control Input to Signal Output High Impedance to Logical Level	$\begin{aligned} & R_{\mathrm{L}}=1.0 \mathrm{k} \Omega, C_{\mathrm{L}}=50 \mathrm{pF}, \text { (Figures } 2 \\ & \text { and } 3 \text {) } \\ & \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V} \end{aligned}$			$\begin{aligned} & 125 \\ & 60 \\ & 50 \end{aligned}$	ns ns ns
tPHZ, tPLZ	Propagation Delay Time Control Input to Signal Output Logical Level to High Impedance	$R_{L}=1.0 \mathrm{k} \Omega, C_{L}=50 \mathrm{pF} \text {, (Figures } 2$ and 3) $\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \\ & V_{D D}=15 \mathrm{~V} \end{aligned}$			$\begin{aligned} & 125 \\ & 60 \\ & 50 \end{aligned}$	ns ns ns
	Sine Wave Distortion	$\begin{aligned} & V_{C}=V_{D D}=5 \mathrm{~V}, V_{S S}=-5 \mathrm{~V} \\ & R_{L}=10 \mathrm{k} \Omega, V_{I S}=5 V_{p-p}, f=1 \mathrm{kHz}, \\ & \text { (Figure 4) } \end{aligned}$		0.1		\%
	Frequency Response-Switch "ON" (Frequency at -3 dB)	$\begin{aligned} & V_{C}=V_{D D}=5 \mathrm{~V}, V_{S S}=-5 \mathrm{~V}, \\ & R_{L}=1 \mathrm{k} \Omega, V_{I S}=5 V_{P-p} . \end{aligned}$ 20 Log 10 VOS $/ \operatorname{VOS}_{\text {O }}(1 \mathrm{kHz})-\mathrm{dB}$, (Figure 4)		40		MHz

AC Electrical Characteristics (Continued)

$T_{A}=25^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{t}}=20 \mathrm{~ns}$ and $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$ unless otherwise noted

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The tables of "Recommended Operating Conditions" and "Electrical Characteristics" provide conditions for actual device operation.
Note 2: $V_{S S}=0 \mathrm{~V}$ unless otherwise specified.
Note 3: These devices should not be connected to circuits with the power "ON".
Note 4: In all cases, there is approximately 5 pF of probe and jig capacitance in the output; however, this capacitance is included in C_{L} wherever it is specified.
Note 5: $V_{I S}$ is the voltage at the in/out pin and $V_{O S}$ is the voltage at the out/in pin. V_{C} is the voltage at the control input.
Note 6: Conditions for $V_{I H C}$:
$\begin{array}{ll}\text { a) } V_{I S}=V_{D D}, I_{O S}=s t a n d a r d ~ & \text { series } I_{O H} \\ V_{I S}=0 V & I_{O L}=s t a n d a r d B \text { series } I_{O L} \text {. }\end{array}$

AC Test Circuits and Switching Time Waveforms

FIGURE 1. tPHL, tplH Propagation Delay Time Signal Input to Signal Output

FIGURE 2. tPZH. tPHZ Propagation Delay Time Control to Signal Output

FIGURE 3. tpZL. iplz Propagation Delay Time Control to Signal Output

AC Test Circuits and Switching Time Waveforms (Cont'd.)

$V_{C}=V_{D D}$ for distortion and frequency response tests $V_{C}=V_{S S}$ for feedthrough test

FIGURE 4. Sine Wave Distortion, Frequency Response and Feedthrough

FIGURE 5. Crosstalk Between Any Two Switches

FIGURE 6. Crosstalk: Control Input to Signal Output

$v_{0 s}$

FIGURE 7. Maximum Control Input Frequency

Typical Performance Characteristics

"ON" Resistance as a Function
of Temperature for $V_{D D}-V_{S S}=10 \mathrm{~V}$

SIGNAL VOLTAGE (VIS) (V)

Special Considerations

In applications where separate power sources are used to drive $V_{D D}$ and the signal input, the $V_{D D}$ current capability should exceed $V_{D D} / R_{L} / R_{L}=$ effective external load of the 4 CD4066BM/CD4066BC bilateral switches). This provision avoids any permanent current flow or clamp action on the $V_{D D}$ supply when power is applied or removed from CD4066BM/CD4066BC.

In certain applications, the external load-resistor current may include both VDD and signal-line components. To
"ON" Resistance as a Function of Temperature for
$V_{D D}-V_{S S}=15 V$

"ON" Resistance as a Function of Temperature for $\mathbf{V}_{D D}-\mathbf{V}_{\mathbf{S S}}=\mathbf{5 V}$

avoid drawing VDD current when switch current flows into terminals $1,4,8$ or 11 , the voltage drop across the bidirectional switch must not exceed 0.6 V at $\mathrm{T}_{\mathrm{A}} \leq 25^{\circ} \mathrm{C}$, or 0.4 V at $\mathrm{T}_{\mathrm{A}}>25^{\circ} \mathrm{C}$ (calculated from R_{ON} values shown).

No $V_{D D}$ current will flow through R_{L} if the switch current flows into terminals $2,3,9$ or 10.

