PLL frequency synthesizer for tuners BU2615S / BU2615FS

The BU2615 PLL frequency synthesizers work up through the FM band. Featuring low radiation noise, low power consumption, and highly sensitive built-in RF amps, they support an IF count function.

Applications

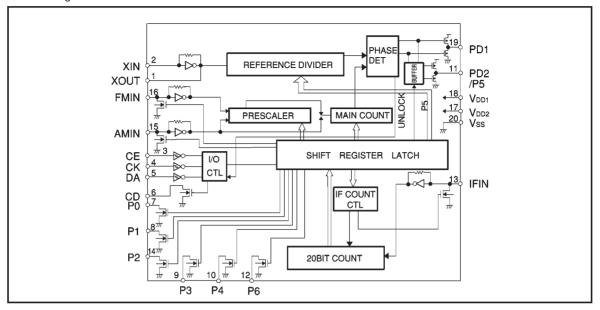
Tuners (Mini components, radio cassette players, radio equipment, etc.)

Features

- Built-in high-speed prescaler can divide 130MHzVCO.
- Basic oscillation of 75kHz keeps unnecessary radiation noise to a low level.
- Low current dissipation (during operation: 4mA, PLL OFF: 100μA)
- In addition to the standard FM and AM, also offers the following 7 frequencies: 25kHz, 12.5kHz, 6.25kHz, 3.125kHz, 5kHz, 3kHz, and 1kHz.
- Counter for measurement of intermediate frequencies.
- 6) Unlock detection
- Seven output ports (open drain).
 The BU2614, with three output ports, is also available.
- 8) Serial data input (CE, CK, DA)

● Absolute maximum ratings (Ta = 25°C)

Parameter		Symbol	Limits	Unit	Conditions
Power supp	ly voltage	VDD	− 0.3∼ + 7.0	٧	VDD1,VDD2
Maximum in	put voltage 1	V _{IN1}	− 0.3∼ + 7.0	٧	CE, CK, DA
Maximum in	put voltage 2	V _{IN2}	-0.3∼Vpp+0.3	٧	XIN, FMIN, AMIN, IFIN
Maximum o	Maximum output voltage 1		− 0.3∼ + 10.0	٧	P0 , P1, P2, P3, P4, P6, CD
Maximum o	Maximum output voltage 2		-0.3∼Vpp+0.3	٧	PD1, PD2, P5, XOUT
Maximum o	utput current	Іоит	0~+3.0	mA	P0 , P1, P2, P3, P4, P6, CD
Power	BU2615	Pd	600*1	147	
dissipation			450*²	mW	
Operating temperature		Topr	−10~ +75	°C	
Storage tem	perature	Tstg	−55∼ +125	°C	


^{*1} Reduced by 6.0mW for each increase in Ta of 1°C over 25°C.

Recommended operating power supply voltage

Parameter	Symbol	Limits	Unit
Power supply	V _{DD1}	2.7~6.0	V
voltage	V _{DD2}	4.0~6.0	٧

^{*2} Reduced by 4.5mW for each increase in Ta of 1°C over 25°C.

Block diagram

Pin assignments

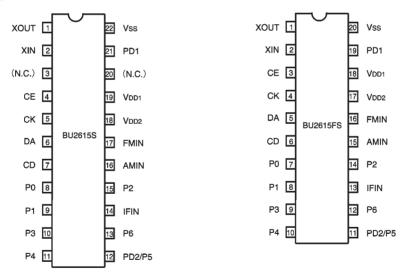


Fig.1 Pin assignments

Pin descriptions

Pin No.		Symbol	Pin name	Pin name Function			
BU2615S	BU2615FS	Symbol	i iii iiaiiie	Function	1/0		
1	1	XOUT	Crystal oscillation	For generation of standard frequency and internal clock.	OUT		
2	2	XIN	Crystal Oscillation	Connected to 75 kHz crystal resonator.	IN		
4	3	CE	Chip enable	Miles CF is LL DA is supply and with the visc of CK and			
5	4	DA	Serial data	when CE is H, DA is synchronous with the rise of CK and read to the internal shift register. DA is then latched at the timing of the fall of CE. Also, output data is output from			
6	5	СК	Clock signal	the CD terminal synchronous to the rise of CK.			
7	6	CD	Count data	Frequency data and unlock data are output.			
8	7	P0		Controlled on the basis of input data.			
9	8	P1			Nch open drain		
10	9	P3					
11	10	P4	Output port				
12	11	P5/PD2		P5/PD2 can be switched between output port and phase	CMOS/3-state		
13	12	P6		comparison output on the basis of input data.	Nch open drain		
14	13	IFIN	IF input	Input for frequency measurement.	IN		
15	14	P2	Output port	Controlled on the basis of input data.	Nch open drain		
16	15	AMIN	AM input	Local input for AM	IN		
17	16	FMIN	FM input	Local input for FM	IN		
18	17	V_{DD2}	Power supply 2	4.0V to 6.0V applied for high-speed circuit power supply.	_		
19	18	V _{DD1}	Power supply 1	Power supply for logic. 2.7V to 6.0V	_		
21	19	PD1	Phase comparison output	High level when value obtained by dividing local output is	3-state		
22	20	Vss	GROUND	higher than standard frequency. Low level when value is lower. High impedance when value is same.	_		
3.20	-	N.C.	N.C.	No internal connection.	_		

●Electrical characteristics (unless otherwise noted, Ta = 25°C, Vdd1 = Vdd2 = 5.0V)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions	
Power supply current 1	IDD1	_	5.0	10.0	mA	FMIN=130MHz, 100mVrms 17-pin curre	ent
Power supply current 2	IDD2	_	100	150	μΑ	18-pin curre	ent
Quiescent current	IDD3	_	150	300	μΑ	No input, PLL = OFF 17-pin curre	ent
Input high level voltage	Vін	4.0	_	_	V	CE, CK, DA terminals	
Input low level voltage	VIL	_	_	1.0	V	CE, CK, DA terminals	
Input high level current 1	liH1	_	_	1.0	μΑ	CE, CK, DA terminals VIN=VDD	
Input high level current 2	IIH2	_	0.3	_	μΑ	XIN terminal VIN=VDD	
Input high level current 3	Іінз	_	6.0	_	μΑ	FMIN, AMIN, IFIN terminals V _{IN} =V _{DD}	
Input low level current 1	liL1	-1.0	_	_	μΑ	CE, CK, DA terminals VIN=Vss	
Input low level current 2	lı12	_	-0.3	_	μΑ	XIN terminal VIN=Vss	
Input low level current 3	IILз	_	-6.0	_	μΑ	FMIN, AMIN, IFIN terminals V _{IN} =V _{SS}	
Output low level voltage 1	V _{OL1}	_	0.2	0.5	V	P0 , P1, P2, P3, P4, P6, CD I ₀ =1.0mA	
Off level leakage current 1	loff1	_	_	1.0	μA	P0 , P1, P2, P3, P4, P6, CD Vo=10V	
Output low level voltage 2	VOL2	_	0.1	0.5	V	FMIN, AMIN, IFIN terminals Iout=0.1mA	
Output high level voltage	Vон	V _{DD} -1.0	V _{DD} 0.3	_	V	PD1, PD2, P5 louт=−1.0m.	Α
Output low level voltage	Vol	_	0.2	1.0	V	PD1, PD2, P5 loυτ=1.0mA	
Off level leakage current 2	loff2	_	_	100	nA	PD1, PD2 Vout=VDD	
Off level leakage current 3	loff3	-100	_	_	nA	PD1, PD2 Vout=Vss	
Internal feedback resistor 1	R _{F1}	_	10	_	МΩ	XIN	
Internal feedback resistor 2	RF2	_	500	_	kΩ	FMIN, ANIN, IFIN terminals	
Input frequency 1	FIN1	10	75	160	kHz	XIN, sine wave, C coupling	
Input frequency 2	FIN2	10	_	130	MHz	FMIN, sine wave, C coupling VIN = 50 mVr	ms
Input frequency 3	FIN3	0.4	_	30	MHz	AMIN1, sine wave, C coupling V _{IN} = 70 mV	rms
Input frequency 4	FIN4	0.4	_	16	MHz	IFIN, sine wave, C coupling V _{IN} = 70 mV _{rms}	;
Maximum input amplitude	FINMAX	_	_	1.5	Vrms	XIN, FMIN, AMIN, IFIN, sine wave, C coupl	ling
Minimum pulse amplitude	TW	_	1.0	_	μs	CK, DA	
Input rise time	TR	_	_	500	ns	CE, CK, DA	
Input fall time	TF	_	_	500	ns	CE, CK, DA	

Explanation of the data

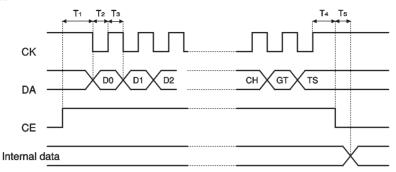
(1) Division data: For D_0 through D_{15} (When S = 1, use D_4 through D_{15} .)

Do	D1	D ₂	Dз	D4	D5	D ₆	D7	D8	D ₉	D10	D ₁₁	D12	D13	D14	D15	

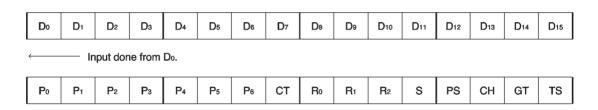
Examples:

Divide ratio=1100(D) 1100(D)÷2=550(D)=226(H) S=0, PS=0 Divide ratio is double the set value. 1 0 0 0 S=1, PS=1 Divide ratio=1107(D)=453(H) 0 0 0 0 0 Divide ratio=926(D)=39E(H) S=1, PS=0 X X X X 0 1 1 1 0 0 1 0 0

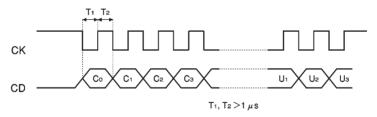
- (2) CT: Frequency measurement beginning data
 - 1: Beginning of measurement
 - 0: Internal counter is reset, IFIN is pulldown.
- (3) Output port control data: P0, P1, P2, P3, P4, P5, P6
 - 1: Open drain output ON (P5 is LO)
 - 0: Open drain output OFF (P5 is HI)
- (4) R0, R1, R2, standard frequency data


	Data		
R₀	Rı	R ₂	Standard frequency
0	0	0	25kHz
0	0	1	12.5kHz
0	1	0	6.25kHz
0	1	1	5kHz
1	0	0	3.125kHz
1	0	1	3kHz
1	1	0	1kHz
1	1	1	%PLL OFF

- (5) S: switch between FMIN and AMIN
 - 0: FMIN 1: AMIN
- (6) PS: If this bit is set to ON while AMIN is selected, swallow counter division is possible.
- (7) CH: If this bit set to ON, output port P5 goes to phase comparison output. 0: P5 1: PD2
- (8) GT: Frequency measurement time and unlock detection ON/OFF


СТ	GT	Frequency measurement	Unlock detection	Data output
0	0	OFF	OFF	NG
0	1	OFF	ON	
1	0	ON gate time 16 ms	ON	ОК
1	1	ON gate time 32 ms	ON	

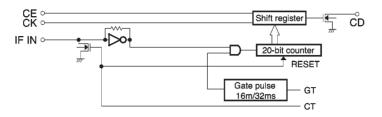
(9) TS: Test data. Input(0).


Input data format

 $T_1 \ge 15 \,\mu$ s $T_2, T_3 > 1 \,\mu$ s $T_4 > 0 \,\mu$ s $T_5 < 15 \,\mu$ s

Output data format CE output is LO.

Output data includes pullup resistance.


Output data format

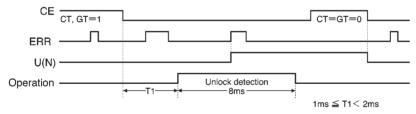
LSB Co C₁ C_2 Сз C4 C5 C₆ C7 C8 C9 C10 C11 C12 C₁₃ C14 C15 Output done from C₀. C16 C₁₇ C₁₈ C19 U٥ U1 U2 Uз

% Data output only possible when CT = 1 or GT = 1.

Frequency counter

(1) Structure

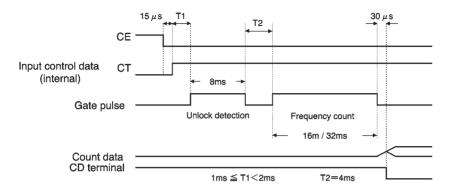
(2) How the frequency counter operates

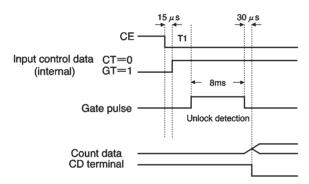

When control data CT equals 1, the 20-bit counter and the amp go into operation. When CT equals 0, input pull-down and the counter are reset. Measuring time (gate pulse) is selected (16ms/32ms) on the basis of control data GT. When control data CT equals 0, the counter is reset.

(3) Explanation of output data

D₀: LSB D₁₉: MSB

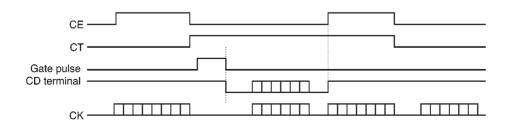
How the unlock detection circuit operates


When control data GT equals 1, or CT equals 1, the unlock detection circuit goes into operation for 8ms. When CT equals 1, the unlock detection circuits stops operating before the frequency counter gate pulse is emitted. When CT equals 0, or GT equals 0, the unlock detection circuit is reset.

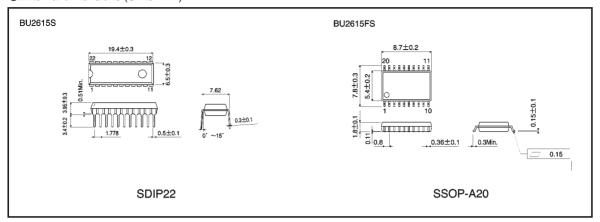

Explanation of output data

U0	U1	U2	U3					
0	0	0	0		<	ERR	<	7 μs
1	1	1	0	7 μs	<	ERR	<	13 μs
1	1	0	0	13 μs	<	ERR	<	26 μs
1	1	1	0	26 μs	<	ERR	<	54 μs
1	1	1	1	54 μs	<	ERR	<	

- ●How the frequency counter and unlock detection circuit operate
- (1) When CT = 1: Frequency count and unlock detection are carried out.



(2) When CT = 0 and GT = 1: Only unlock detection is carried out.



Explanation of CD terminal

When frequency measurement or unlock detection is finished, the CD terminal goes to LO to indicate that the count and unlock detection have finished. It also synchronizes with CK to output counter data. When the next data is input, it goes to HI.

External dimensions (Units: mm)

