Gray scale processor (64 tones)

 BU2135KThe BU2135K is an LSI designed for use in image scanners and facsimile machines, with a function which takes analog image signals output from an image sensor in an image processing device and converts them to binary format.
This product is equipped with an internal B-bit A/D converter, image sensor control circuit, and CPU interface, and can be configured easily for data reading. It is compatible with the BU2134AK, making it easy to configure up 64 -tone settings.
-Applications
Facsimile machines, word processors, and other similar devices

- Features

1) Internal 8-bit A/D converter. (internal data width after shading: 6 bits
2) Internal B-bit D / A converter
3) Isolated point rejection. (when using simple binary processing)
4) Applied binary processing.
5) Data can be read following shading correction All other functions of the BU2134AK are included in the BU2135K
-Block diagram

-Absolute maximum ratings (Unless otherwise noted, $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$)

Parameter	Symbol	Limits	Unit
Power supply voltage	Vod	$-0.3 \sim 7.0$	\checkmark
Input voltage	Vin	$-0.3 \sim \mathrm{VDD}+0.3$	V
Analog power supply voltage	AVDD	$-0.3 \sim V_{D D}+0.3$	V
Analog input voltage	AVIn	$-0.3 \sim A V_{\text {oo }}+0.3$	\checkmark
Operating temperature	Topr	0~70	${ }^{\circ} \mathrm{C}$
Storage temperature	Tstg	-55~150	${ }^{\circ} \mathrm{C}$
Input current	lin	± 20	mA
Output current	lo	± 20	mA
Power dissipation	Pd	800*	mW

-Recommended operating conditions (Unless otherwise noted, $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$)

Parameter	Symbol	Min.	Typ.	Max.	Unit
Power supply voltage	VDD	4.75	5	5.25	V
Input voltage	Vin	0	-	Vod	V
Analog power supply voltage	AVDD	0	-	VDD	V
Analog ground voltage	Aand	-	0	-	V
Reference voltage +	Reft	3	-	AVdo	V
Reference voltage -	Ref-	0	-	1	V
Analog input voltage	AIN	Ref-	-	Ref+	V

- Pin descriptions			
Parameter	Pin Name	$1 / 0$	Function
Video signal output	DTO	Output	Outputs binary video signal as serial data.
Line memory interface	MA13~MA00	Output	Outputs external SRAM address; MA13 is MSB.
	MD7~MD0	Input/Output	Dala bus for external SRAM; MD7 is MSB.
	$\overline{O E}$	Output	Output Enable signal for external SRAM (negative logic)
	WE	Output	Write Enable signal for external SRAM (negative logic)
CPU interface	AB3 \sim AB0	Input	Address input pin; AB4 is MSB.
	DB7~DB0	Input/Output	Data inputoutput pin; DB7 is MSB.
	Wh	Input	Write input pin for setting internal register (negative logic)
	$\overline{\mathrm{AD}}$	Input	Read input pin for reading internal register (negative logic)
	DREQ	Output	Outputs DMA Request signal in parallel mode. Outputs DTO latch clock in serial mode.
	$\overline{\text { DACK }}$	Input/Output	Inputs DMA Acknowledge signal in parallel mode (negative logic). Outputs DTO Enable signal in serial mode (negative logic).
	$\overline{\text { CS }}$	Input	Chip Select input pin which enables access to internal register (negative logic)
	$\overline{\mathrm{R} S T}$	Input	System reset input pin (negative logic)
System clock	SCLK	Input	System clock input pin
Line start	LNST	Input	Inputs line start signal
Image sensor interface	$\phi 1$	Output	Output pin 1 for image sensor drive clock
	\$2	Output	Output pin 2 for image sensor drive clock
	RS	Output	Image sensor reset signal output pin
	ϕ TG	Output	Image sensor transfer gate pulse output pin
	CLP	Output	Analog ground signal
Analog interlace	DAO	Output	Outputs conversion voltage for D/A converter.
	AlN0	Input	Inputs image sensor analog video signals.
	AlN1	Input	Inputs analog signals (such as temperature sensor).
	REF+	-	Connect this to reference vollage of the ADD converter full-scale point.
	REF-	-	Connect this to reference voltage of the A/D converter zero point.
Power supply/ground	VDD	,	Connect this to the digital power supply (+5 V) (Pin 3).
	GND	-	Connect this to the digltal ground (Pin 4).
	AVDD	\cdots	Connect this to the analog power supply (Pin 1).
	AGND	-	Connect this to the analog ground (Pin 1).

-Pin assignments

Onput/output circuit formats							
Pin No.	1/0	Pin Name	1/O Cirsuit Format	Pin No.	$1 / 0$	Pin Name	1/O Circuit Format
1	0	MA00	C	33	1/0	DB5	E
2	0	MA01	C	34	$1 / 0$	DB6	E
3	0	MA02	C	35	$1 / 0$	DB7	E
4	0	MA03	c	36	1	AB0	B
5	0	MA04	c	37	1	AB1	B
6	0	MA05	c	38	1	AB2	B
7	0	MA06	C	39	1	AB3	B
8	G	GND	-	40	G	GND	-
9	V	Vod	-	41	V	$V_{\text {do }}$	-
10	0	MA07	C	42	$1 / 0$	DACK	E
11	0	MA08	c	43	0	DREQ	C
12	0	MA09	c	44	1	WR	B
13	0	MA10	c	45	1	RD	B
14	0	MA11	c	46	1	CS	A
15	0	MA12	c	47	1	RST	A
16	0	MA13	C	48	1	LNST	A
17	\bigcirc	OE	C	49	V	AVDD	-
18	0	WE	C	50	1	AINO	F
19	1/0	MDO	D	51	1	AIN1	F
20	$1 / 0$	MD1	D	52	-	REF+	G
21	1/0	MD2	D	53	-	REF-	G
22	$1 / 0$	MD3	D	54	G	AGND	-
23	$1 / 0$	MD4	D	55	0	DAO	H
24	G	GND	-	56	V	Vod	-
25	$1 / 0$	MD5	D	57	0	$\phi 1$	c
26	110	MD6	D	58	0	$\phi 2$	C
27	110	MD7	D	59	0	RS	c
28	$1 / 0$	DB0	E	60	0	$\phi T G$	c
29	$1 / 0$	DB1	E	61	0	CLP	c
30	$1 / 0$	DB2	E	62	0	DTO	C
31	110	DB3	E	63	G	GND	-
32	110	DB4	E	64	1	SCLK	A

Olnput/output circuits

(A) Schmitt input cell

(C) CMOS output cell

(E) BI-directional TTL Schmitt input cell

(G) Reterence voltage input cell

(B) TTL Schmitt input cell

(D) Bi-directional CMOS Input pull-up cell

(F) Analog inpul call

(H) Analog output cerl
-OC characteristics (Unless otherwise noted, $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{V}_{00}=5 \mathrm{~V}$)

Parameter	Symbol	Min.	Tryp.	Max.	Unit	Conditions
Input voltage " H "	$\mathrm{V}_{\mathrm{H} 1}$	3.5	-	$V_{\text {DD }}$	V	CMOS level
Input voltage "L"	VL1	0	-	1.5	V	CMOS level
Input voltage "H"	V_{1+2}	2.4	-	VDD	V	TTL Schmitt
Input voltage "L"	VIL2	0	-	0.8	V	TTL Schmitt
Input voltage " H "	$\mathrm{V}_{\mathbf{H}}$	2.7	-	4.0	V	CMOS Schmitt
Input voltage "L"	$\mathrm{V}_{\text {L3 }}$	1.3	-	2.0	\checkmark	CMOS Schmitt
Hysteresis voltage	V_{H}	0.4	-	1.8	V	Schmitt level
inpul current "H"	$\mathrm{IIH}^{\text {H }}$	-	-	-10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{H}}=\mathrm{V}_{\mathrm{DD}}$
Input current "L"	l	-	-	10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{ll}}=\mathrm{GND}$
Output voltage "H" 1	Vory	4.6	-	-	V	$\mathrm{loH}^{1}=-1.0 \mathrm{~mA}$
Output voltage "L" 1	VoL1	-	-	0.4	V	$\mathrm{lol}_{1}=3.2 \mathrm{~mA}$
Output voltage " H " 2	Vohz	4.6	-	-	V	$\mathrm{loH}^{2}=-2.0 \mathrm{~mA}$
Output voltage "H" 3	Vон3	4.6	-	-	V	Іон3 $=-3.5 \mathrm{~mA}$
Output voltage "L" 3	Vol3	-	-	0.4	V	$\mathrm{l}_{0.1}=11.2 \mathrm{~mA}$
Output leakage current	loz	-	-	± 10	$\mu \mathrm{A}$	$V_{0}=V_{\text {OD }}$ or GND
Static current consumption	Ist	-	-	100	$\mu \mathrm{A}$	$\mathrm{V}_{1}=\mathrm{V}_{\text {DD }}$ or GND

* 1 VIH1 and VIL1 are applied to Pins MDO to 7
* 2 VIH2 and VIL2 are applled to PIns DBO to 7, ABO to 3, DACK, WR, and RD
* 3 ViH3 and VIL3 are applied to Pins CS, RST, LNST, and SCLK.
* 4 VH is applled to plins DBO to 7, ABO to 3. DACK, WR, RD, CS, RST, LNST, and SCLK.
*5 VOH1 is applied to the DACK pin.

* 7 VOH 2 is applied to Pins MAO to 13 , OE, WE, MOO to 7 , OREQ. $\phi 1, \phi 2$, RS, ϕ TG, CLP, and DTO.
* G VOH3 and Vol3 are applied to Pins DBO to 7.

Switching characteristics (Unless otherwise noted, $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{V}_{00}=5 \mathrm{~V}$)

Parameter		Symbol	Min.	Typ.	Max.	Unit
System clock	System clock cycle tcyc	1	60	-	-	ns
	System clock pulse width "H" twh	2	30	-	-	ns
	System clock pulse width "L" ${ }_{\text {w }}$	3	30	-	-	ns
CPU interface	CS \sim WR, RD setup time	4	0	-	-	ns
	AAB ~WR, RD setup time	5	20	-	-	ns
	DB \sim W setup time	6	50	-	-	ns
	WR, RD pulse width	7	100	-	-	ns
	WR, RD ~ CS hold time	8	0	-	-	ns
	WR, RD ~ AB hold time	9	20	-	-	ns
	WR ~ DB hold time	10	20	-	110	ns
	RD ~ DB hold time	10	0	-	-	ns
SRAM interface	Read cycle time	11	-	toyc	-	ns
	MA, MCS ~ OE setup time	12	-	twh	-	ns
	OE pulse width	13	-	twl	-	ns
	OE ~ MA, MCS hold time	14	0	-	-	ns
	Write cycle time	15	-	tcyc	-	ns
	MA, MCS ~ WE setup time	16	-	twh	-	ns
	MA, MCS ~ WE setup time	17	-	twl	-	ns
	WE pulse width	18	-	twl	-	ns
	WE ~ MA, MCS hold time	19	0	-	-	ns
	WE ~ MD hold time	20	0	-	-	ns

SYSTEM CLOCK

GPU INTERFACE

SRAM INTERFACE

Fig. 2 Data inputoutput timing

- Description of register functions

Address	DB7	DB6	DB5	D4	DB3	DB2	D81	DB0	R	W
0	* 8	* 7	* 6	* 5	* 4	* 3	*2	* 1	\bigcirc	\bigcirc
1	* 14	* 13			*12	* 11	* 10	*9	\times	\bigcirc
2	*24	* 20	* 19		*18	* 17	* 16	*15	\times	\bigcirc
3	Line clamp/start position MSB is \#				*22				\times	\bigcirc
4	\#		Line clamp/end position						\times	\bigcirc
5	Distortion correction start position								\times	\bigcirc
6	\$	ABC start position							\times	\bigcirc
7	ABC end position; MSB is \$								\times	\bigcirc
8	* 23								\bigcirc	\bigcirc
9	*24								\times	\bigcirc
A	* 26				* 25				\times	\bigcirc
B	* 28		*27						\times	\bigcirc
C	* 30				* 29				\times	\bigcirc
D	* 32			* 31					\times	\bigcirc
E	* 35	* 34			*33				\times	\bigcirc
F	D/A converter digital data								\times	\bigcirc
FU	*38	* 37	* 36	0	0	0	0	0	\times	\bigcirc

* 1 White reference screen scan (read enabled)

When 0: Stop
When 1:
Oftset scan (read enabled)
Otiset scan (read enabled)
When 0
Stop

Binary processing (read enabled)
Binary processing (read enabled)
Wheno: When 0:
*4 ABC Enable (read enabled) Start When 0: OH
On

ABC initialization
When 0: OH When 1 : On

* 6 SRAM access select

When 0: Access to external SRAM

1) When $* 35$ is 0 and $* 38$ is 0 : Read/write whlte velerence dat
2) When $* 35$ is 0 and $* 38$ is 1 : Read/write all addresses
3) When $* 35$ is 1 and $* 38$ is 0 : Read/write thresholds of applied blnary data
4) When $* 35$ is 1 and $* 38$ is 1 : Use inhibitited

When 1: Access to internal SRAM

1) When using simple binary processing: 6 bits $\times 64$ words (gamma correction data)
2) For dither method:
3) For error dispersion method : $\quad 6$ bits $\times 64$ words (sice daia)
*7 SRAM data/Write Enable When 0:
When 1 :

* \& SRAM data/Read Enable When 0: When 1: 6 blts $\times 64$ words (white level)

Writing to SRAM from Address 8 is off Writing to SRAM from Address 8 is on
*9 Binary video signal output mode When 0 : When 1 :

* 10 Parallel mode specification When 0 When 1
*11 Binary video signal selaction When 0 When 1
*12 Offset correction
When 0 : When 1
3 Internal sample/hold timing
When 000 :
When 001 :
When 001 :
When 010 :
When 011 :
When 100 :
When 100 :
When 101 :
Whan 101 :
When 110 :
Whan 111 :
When 0
When 1:
When 0 :
When 1 :
* 16 \$TG output logic

When 0
When 1 :
*17 RS and CLP output logic When 0 When 1 :

* 18 Clamping mathod When 0 : When 1
* 19 \$ 1 clack and RS outpur specification 1) $\$ 1$ clock duty (when using CIS)

When 00 :
When 01 :
When 10 :
When 11:
2) RS output position (when using CCD)

When 00 :
When 00
$20 \$$ TG pulse width

1) When using CCD

Wheno:
When 1 :
2) When using ClS

When 0

Binary video signals are output as serial data.
Binary video signals are output as parallel data
First bit of binary video signal is taken as LSB.
First bit of binary video signal is taken as MSB.
Black $=0$, White $=1$
Black $=1$, White $=0$
Ofl
On

Sampled at S1 cycle
Sampled at S2 cycle
Sampled at Sa cycle
Sampled at $\mathbf{S 3}$ cycle
Sampled at S4 cycle
Sampled at S5 cycle
Sampled at 55 cycle
Sampled at S6 cycle
Sampled at S 7 cycle
Sampled at SO cycle
Connected to AINO
Connected to AIN1
CCD
cIS
Positive logic
Negative loggic
Positive logic
Negative logic
Bit clamping
Line clamping

HIGH for $\mathbf{S O}$ to $\mathbf{S 3}$ cycles, LOW for $\$ 4$ to $\$ 7$ cycles HIGH for SO to S 3 cycles, LOW for S 4 to S 7 cycles HIGH for So to S 1 cycles, LOW for S 2 to S 7 cycles HIGH tor SO to S 5 cycles, LOW ior SE to $\mathrm{S7}$ cycles

Output at S 5 cycle
Output at S 6 cycle

Output at S 1 to $\$ 6$ cycles Output al S0 to S 7 cycles

Output al $\$ 1$ to 50 cycles
Outpulal SO to 57 cycles

```
*21 Back register enable When 0: When 1:
Hegister of Address FU is valiid.
```

DB3	DB2	DB1	DB0	Distortion correction width	Reading width	Reading position
0	0	0	0	1728	1728 (A4, 8 dotis/mm or equivalent)	-
0	0	0	1	2048	1728 (A4, 8 dots/mm or equivalent)	Center
0	0	1	0	2048	2048 (B4, 8 dots/mm or equivalent)	-
0	0	1	1	2432	1728 (A4, 8 dots/mm or equivalent)	Center
0	1	0	0	2432	2048 (84, 8 dots/mm or equivalent)	Center
0	1	0	1	2432	2432 (A3, 8 coistimm or equivalent)	-
0	1	1	0	2592	2592 (A4, 12 dots/mm or equivalent)	-
0	1	1	1	3072	2592 (A4, 12 dotsimm or equivalent)	Center
1	0	0	0	3072	3072 (B4, 12 dots/mm or equivalent)	
1	0	0	1	3648	2592 (A4, 12 dots/mm or equivalent)	Center
1	0	1	0	3648	3072 (B4, 12 dots/mm or equivalent)	Center
1	0	1	1	3648	3648 (A3, 12 dots/mm or equivalent)	
1	1	0	0	3456	3456 (A4, $16 \mathrm{dots} / \mathrm{mm}$ or aquivalent)	-
1	1	0	1	4096	3456 (A4, 16 dots/mm or equivalent)	Center
1	1	1	0	4096	4096 (A4, 16 dots/mm or equivalent)	-

* 23 Numerator of reduction ratio in horizontal direction
*24 Denominator of reduction ratic in horizonta direction *23
The reduction ratio is set as shown below, using Address 8 (numerator) and Address 9 (denominator)

$$
\text { Reduction ratio }=\frac{\text { (value set for reduction ratio numerator) }+1}{\text { (value set for reduction ration denominator) }+1}
$$

* 25 Black tollow-up speed

When 0 :
When 1 to 15
*26 White follow-up speed
When 0 :
*27 Binary paramet

1) For simple binary processing
2) For organizational dither processing
3) For arror dispersion processing:

* 28 Binary mode

When 00 :
When 01 :
When 10 :
Whan 11:
When 11
When 0 :
When 1 to 15 :
Degree of et
When 0 :
When 1 to 15 :

ABC circuit not followed on dark background
The larger the se: value, the faster the $A B C$ is followed on a dark background.
ABC circuit not followed on light background
The larger the set value, the faster the $A B C$ is followed on a light background.
Set the slice level.
This parameter is invalid
Set the black level.
Simple binary processing
Simple binary processing
Pseudo intermedlate processing using organizational dither method
Pseudo intermediate processing using error dispersion methoo Pseudo in
direction
Edge enhancement off
The larger the set value, the stronger the enhancement will be.
The larg
cal direction
Edge enhancement off
The larger the set value, the stronger the enhancement will be.
*31 Edge enhancement correction parameter
This parameter is used as a threshold to judge whether edge enhancement or smoothing is to be carried out when the amount of density of the pixel edge in question changes.
*32 Degree of smoothing
When 0: Smoothing function off
When 1 to 6 :
The larger the set value, the greater the degree of smoothing that is carried out.
When 7:
Use inhibited
*33 Character enhancement parameter B
When pseudo intermediate processing is used, this parameter is used as a threshold to delermine whether or not edge enhancement is to be
carried out when the amount of density in both the horizontal and vertical directions is changed.

* 34 Character enhancement parameter A

1) This parameter defines character enhancement when pseudo intermediate processing is used
2) When using the dither method

When 000 :
Character enhancement off
When 001 to 111 :
When 000 :
The larger the set value, the stronger the enhancement will be.
Character enhancement off
When 001 to 111: The larger the set value. the stronger the enhancement will be,
*35 Applied binary enable
When 1:

* 36 Expansion port enable

When 0:
When using simple binary processing, the slice level is determined by the binary parameter

When 1:
37 Expin 16 (MA13) is used as the expansion port.
When 0:
The expansion port date is 0
When 1: The expansion port data is 1

* 39 Resetting the internal registers of Addresses 0 10 2 and Address FU clears the values to 0 The set values for other internal registers do not change when a reset is intiliated.
* 40 Register setting unit

1) The line clamping start and end positions can be specified in units of 1 pixel.
2) The distortion correction start position can be specilied in units of 1 pixal
3) The ABC start and end positions can be specified in units of 16 pixels.
*41 In the following cases, Address 8 should be used for reading and writing of data.
4) Reading digital data after A / D conversion
5) Reading and wrting internal SRAM data
6) Reading and writing external SRAM data
-Operation timing charts

-Operation timing charts

Fig. 10 Output timing diagram (parallel mode)

Application example

Fig. 11

External dimensions (Units: mm)

Notes

- The contents described in this catalogue are correct as of March 1997.
- No unauthorized transmission or reproduction of this book, either in whole or in part, is permitted.
- The contents of this book are subject to change without notice. Always verify before use that the contents are the latest specifications. If, by any chance, a defect should arise in the equipment as a result of use without verification of the specifications, ROHM CO., LTD., can bear no responsibility whatsoever.
- Application circuit diagrams and circuit constants contained in this data book are shown as examples of standard use and operation. When designing for mass production, please pay careful attention to peripheral conditions
- Any and all data, including, but not limited to application circuit diagrams, information, and various data, described in this catalogue are intended only as illustrations of such devices and not as the specifications for such devices. ROHM CO., LTD., disclaims any warranty that any use of such device shall be free from infringement of any third party's intellectual property rights or other proprietary rights, and further, assumes absolutely no liability in the event of any such infringement, or arising from or connected with or related to the use of such devices.
- Upon the sale of any such devices; other than for the buyer's right to use such devices itself, resell or otherwise dispose of the same; no express or implied right or license to practice or commercially exploit any intellectual property rights or other proprietary rights owned or controlled by ROHM CO., LTD., is granted to any such buyer.
- The products in this manual are manufactured with silicon as the main material.
- The products in this manual are not of radiation resistant design.

The products listed in this catalogue are designed to be used with ordinary electronic equipment or devices (such as audio-visual equipment, office-automation equipment, communications devices, electrical appliances, and electronic toys). Should you intend to use these products with equipment or devices which require an extremely high level of reliability and the malfunction of which would directly endanger human life (such as medical instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers, or other safety devices) please be sure to consult with our sales representatives in advance.

- Notes when exporting
- It is essential to obtain export permission when exporting any of the above products when it falls under the category of strategic material (or labor) as determined by foreign exchange or foreign trade control laws.
- Please be sure to consult with our sales representatives to ascertain whether any product is classified as a strategic material.

