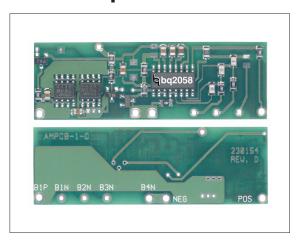


Three or Four Series Cell Li-Ion Pack Supervisor Module


Features

- ➤ Complete and compact lithium-ion pack supervisor
- Provides overvoltage, undervoltage, and overcurrent protection for three or four series Li-Ion cells
- \blacktriangleright Combines bq2058 with charge/discharge control FETs
- ➤ High side low on-resistance FETs
- Designed for battery pack integration
 - Direct connection for series battery terminals
 - Measures 2.10 X 0.70 inches
- ➤ Low standby and operating currents

General Description

The bq2158 provides a complete solution for the supervision of three or four series Li-Ion cells. Designed for battery pack integration, the bq2158 incorporates a bq2058 Pack Supervisor, two FETs, and all other components required to monitor overvoltage, undervoltage, and overcurrent conditions. The board provides direct connections for the negative and positive terminals of each cell. See Figure 1. Please refer to the bq2058 data sheet for specific information on the operation of the bq2058.

Unitrode configures the bq2158 based on the information in Table 1.

Pin Descriptions

B1P	Battery 1 positive input/pack positive
B1N	Battery 1 negative input
B2N	Battery 2 negative input
B3N	Battery 3 negative input
B4N	Battery 4 negative input

POS Pack positive

NEG Pack negative

Table 1. bq2158 Module Configuration

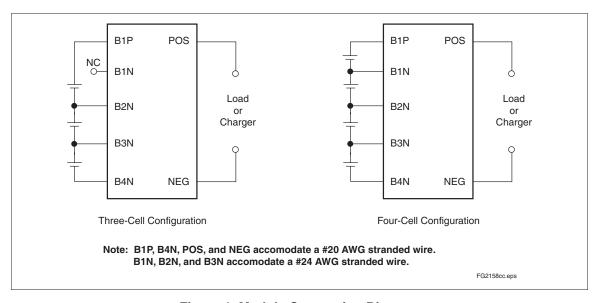
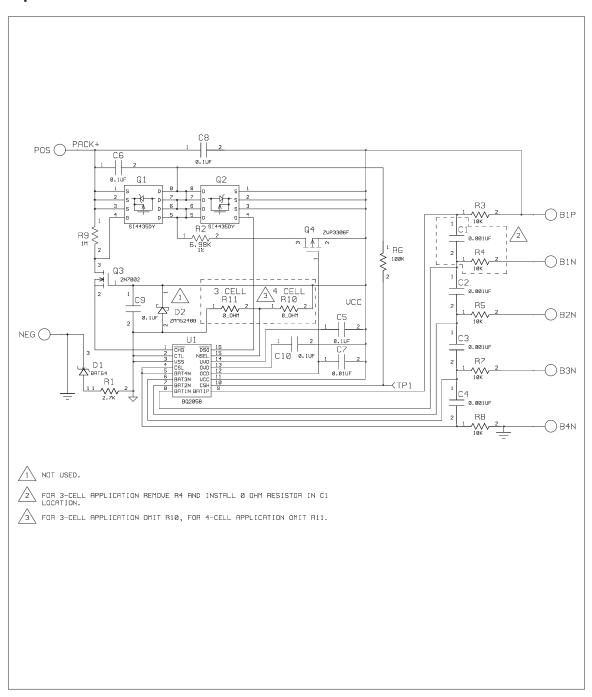

Contact:	Phone:	
Address:		
Sales Contact:	Phone:	
Number of series cells (3 or 4)		
Overvoltage threshold (4.25, 4.30 or 4.35V)		
Charge current (3.9A max.)		
Discharge current (3.9A max.)		
FAE approval:	Date:	

Table 2. Pin Connections

Number of Cells	On-board bq2058 Configuration	
3 cells	BAT1N tied to BAT1P NSEL = V_{SS}	
4 cells	$NSEL = V_{CC}$	


Operation

The bq2158 monitors each series element for undervoltage, over-voltage, and over-current conditions. If a cell falls below $V_{\rm UV}$ for $t_{\rm UVD}$, the bq2158 enters into sleep mode. The bq2158 wakes up and enables discharge if a voltage, $V_{\rm CD}$ higher than the battery voltage, is applied across POS and NEG. Charging is disabled if a cell exceeds $V_{\rm OV}$ for $t_{\rm OVD}$, and can resume when the cell falls below the $V_{\rm CE}$ threshold. The bq2158 turns the discharge FET off if the steady state load current exceeds $I_{\rm OC}$ for $t_{\rm OCD}$ and turns it back on if the load is removed.

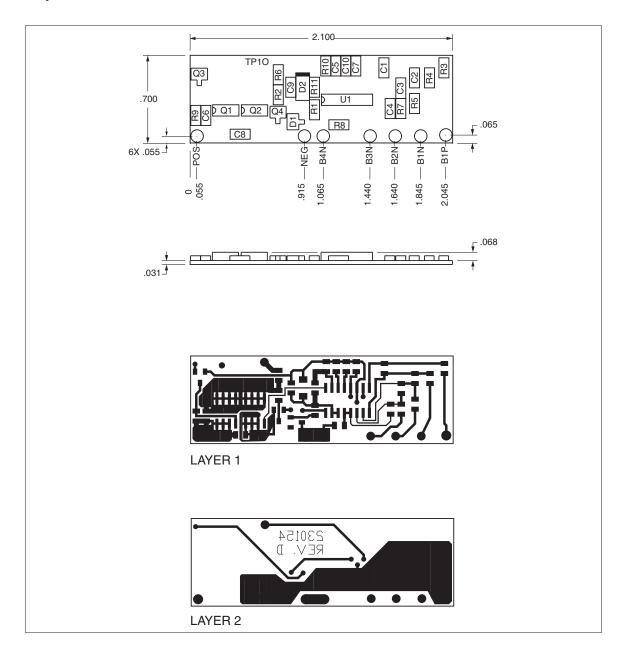


Figure 1. Module Connection Diagram

bq2158 Schematic

bq2158 Board

Absolute Maximum Ratings

Symbol	ymbol Parameter		Unit	Conditions
VOP Supply voltage (B1P to B4N)		18	V	DC
V _{TR} Maximum transient voltage (B1P to B4N)		32	V	Maximum duration = 1.5μs
V _{CHG} Charging voltage (POS to NEG)		18	V	
I _{CHG} Continuous charge/discharge current		3.9	A	V _{OP} > 6V T _A = 25°C
TOPR Operating temperature		-30 to +70	°C	
T _{STG} Storage temperature		-55 to +125	°C	

Note:

Permanent device damage may occur if **Absolute Maximum Ratings** are exceeded. Functional operation should be limited to the Recommended DC Operating Conditions detailed in this data sheet. Exposure to conditions beyond the operational limits for extended periods of time may affect device reliability.

DC Electrical Characteristics (T_A = T_{OPR})

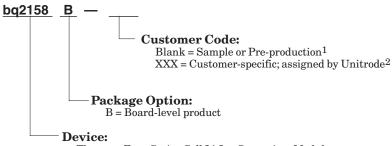
Symbol	Operating valte go P1D to		Typical	Maximum	Unit	Conditions/Notes
VOP			-	18	V	
ICCA Operating current		-	39	57	μA	
ICCS	-		0.7	1.5	μΑ	No load across POS and NEG
RON			-	50	mΩ	$T_A = 25^{\circ}C$ $V_{OP} = 10V$

DC Thresholds (TA = TOPR)

Symbol	Parameter	Value	Tolerance	Unit	Notes
Vov	Overvoltage threshold	4.25	$\pm~50 \mathrm{mV}$	V	
V_{CE}	Charge enable voltage	V _{OV} - 100mV	$\pm~50 \mathrm{mV}$	V	
V _{UV}	Undervoltage limit	2.25	± 100mV	V	
Ioc	Overcurrent limit	3.4		A	$T_A = 25^{\circ}C$
		3.8		A	$T_{A} = 60^{\circ}C$
$t_{ m UVD}$	Undervoltage delay	950	±50%	ms	$T_{\rm A}=30^{\circ}{ m C}$
V_{CD}	Charge detect threshold	70	-60, +80	mV	
tovd	Overvoltage delay	950	±50%	ms	$T_{\rm A}=30^{\circ}{ m C}$
tocd	Overcurrent delay	12	±60%	ms	$T_{A} = 30^{\circ}C$

Note:

The thresholds above reflect the operation of a bq2158 using the standard bq2058 IC ($V_{OV} = 4.25V$). Specify other versions of the bq2058 by indicating the appropriate V_{OV} threshold in Table 1.


Data Sheet Revision History

Change No.	Page No.	Description	Nature of Change
1	3	Table 2 pin connections	Clarified onboard bq2058 connection.

Note:

Change 1 = May 1999 B changes from July 1996.

Ordering Information

Three- or Four-Series Cell Li-Ion Supervisor Module

Notes:

- 1. Requires configuration sheet (Table 1)
- 2. Example production part number: bq2158B-001

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1999, Texas Instruments Incorporated