Chroma signal frequency converter BA7049S/BA7049FS

The BA7049S and BA7049FS convert NTSC, PAL-M and PAL-N chroma signal subcarrier frequencies to the PAL format 4.433619MHz to allow PAL format processing circuits to handle record and playback signals for these other formats. These ICs facilitate the development of multi-format VCRs.

Applications

Multi-format VHS VCRs.

Features

1)Converts record and playback signals to standard format.

2)Compatible with up to three other formats in addition to PAL.

3)Y and chroma system filter switches are all built-in. Few external components required.

Block diagram

322

rohm

BA7049S/BA7049FS

●Absolute maximum ratings (Ta=25°C)

Parameter	Symbol	Limits	Unit
Applied voltage	VCC Max.	8.0	V
Power dissipation	Pd	800 *	mW
Operating temperature	Topr	-25~70	Ĵ
Storage temperature	Tstg	-55~125	Ĵ,

* Reduced by 8.0mW for each increase in Ta of 1°C over 25°C.

Recommended operating conditions (Ta=25°C)

Parameter	Symbol	Min.	Тур.	Max.	Unit
Operating supply voltage	Vcc	4.5	5.0	5.5	V

●Electrical characteristics (Unless otherwise specified: Ta=25℃ and Vcc=5.0V)

Parameter	Symbol	Min.	Тур.	Мах.	Unit	С	onditions
Circuit current	lcc	20.5	31.0	41.5	mA		
0dB amplifier voltage gain	Go	-0.5	0.0	+0.5	dB	f=1MHz	Vin=0.5VPP
0dB amplifier frequency characteristic	fo	-2.0	+0.0	+1.0	dB	f=5MHz / 1MHz	Vin=0.5VPP
6dB amplifier voltage gain	Gé	+5.5	+6.0	+6.5	dB	f=1MHz	Vin=0.25Vpp
6dB amplifier frequency characteristic	fe	-2.0	+0.0	+1.0	dB	f=5MHz / 1MHz	Vin=0.25VPP
Interchannel crosstalk	Ст		-45	-40	dB	f=4.43MHz	Vin=0.5Vpp
Frequency divider output level	VOE .	0.50	0.85	1.30	VPP	When 3.4MHz/3.58	BMHz X'tal is oscillating
BM output level	Vob	125	185	245	тVер	f=3.58MHz	Vin=0.3VPP
BM carrier leak	CLa	-	-40	-30	dB	f=3.58MHz	Vin=0.3VPP
Switch voltage 1	VTH1	1.00	2.00	3.00	v	M1, M2, M3	
Switch voltage 2	VTH2	3.50	3.90	4.35	v	EE. CTL	

Guaranteed design items	(Unless otherwise specified	: Ta=25°C and Vcc=5.0V)
-------------------------	-----------------------------	-------------------------

Parameter	Symbol	Min.	Тур.	Max.	Unit		Conditions	
0dB amplifier voltage gain	Go	-1.0	0.0	+0.5	dB	f=4MHz	Vin≕0.5V _{PP}	

© Not designed for radiation resistance.

Rohm

VCR components

i

BA7049S/BA7049FS

●Logic truth table

M1	M2	SW1
L	L	-
н	L	1
L	н	2
н	н	3

-			
	M1	M2	SW3, 4, 6
	L	L	L
	н	L	н
	L	н	н
	н	н	н

M1	M2	5W8
L	L	Н
н	Ľ	L
L	н	L
н	н	L

; ÷

1

МЗ	SW2	EE. CTL	SW5, 7
L	L	н	н
н	Н	 M/L	M/L

Input / output circuits

Din No.	Eurotion	Pin v	oltage	Input/output	
FILLING.	DC AC resistance	resistance			
1	XTAL 1	2.0V	1.0Vpp	150 Ω	$CTL \rightarrow \downarrow 0 500 \mu A$
2	XTAL 2	2.0V	1.0Vpp	150 Ω	CTL 18 500 µ A

rdh*i*n

Pin voltage Input/output resistance Pin No. Equivalent circuit Function DC AC XTAL 3 2.0V 150 Ω 3 1.0Vpp 3 100 500 μ A CTL XTAL, COM 4 2.0V 5kΩ 1.7VPP 5k Ŧ 100 4 NTSC/PAL format converters LPF. IN (1MHz) 5 4.0V 130 Ω 850mVpp 5 100 100 1mA VCR components 20k LPF. OUŤ (1MH) 6 2.0V 500mVpp 20kΩ \$100 \$ 100 µ A T2V 6 2V 2V ≸2k 7 PB. OUT 2.0V 300mVpp **130 Ω** 7 100 ROHM 325

Video ICs

!

BA7049S/BA7049FS

1

BA7049S/BA7049FS

Pin No	Function		roltage	Input/output	Equivalent circuit
		DC	AC	resistance	
8	BPF. IN (3.58MHz)	2.3V	1.0Vpp	150 Ω	2V 3.2k ¹⁰⁰ B
9	BPF. OUT (3.58MHz)	2.0V	150mVpp	20kΩ	20k 100 µA 9
10	GND	ov	-	_	
11	PB. C. OUT	2.0V	.300mVpp	20kΩ	$ \begin{array}{c} 11 \\ 120k \\ \hline 20k \\ \hline 20k \\ \hline 10 \\ \hline 10 \\ \hline 10 \\ \hline 11 \\ \hline 11 \\ \hline 11 \\ \hline 10 \\ 10 \\ \hline 1$
12	VIDEO. IN	2.0V	300mVee	20kΩ	20k ₹100 µA

BA7049S/BA7049FS

Pin No	Eurotion	Pin v	oltage	Input/output	Equivalent circuit
		DC	AC	resistance	
13	BPF. OUŤ (4.43MHz)	2.0V	150mVpp	20kΩ	20k 20k π 100 μ 100 μ 100 μ 100 μ 100 μ 100 μ 100 μ 100 μ 100 μ 100 μ
14	BPF. 1N (4.43MHz)	2.2V	1.0Vpp	130 Ω	2.25V 2.8k ¹⁰⁰ 14
15	PAL. REC. C	2.0V	150mVee	20kΩ	20k 100 μ Α 15
16	МЗ	60mV	_	50kΩ	16 50k 30k 777
17	REC. C. OUT	2.0V	150mVee	130 Ω	2V 2V 2k 100 17
	·			<u> </u>	

1

BA7049S/BA7049FS

Pin No.	Function	Pin voltage		Input/output	Equivalent circuit
18	 M2	60mV		Tesistarice 50kΩ	18 50k \$30k
19	Y. OUT	2.0V	400mVpp	130 Ω	2V 2V 2k 100 19
20	VCC	5.0V	_	_	20
21	LPF. OUT (3MHz)	2.0V	200mVpp	20kΩ	
22	M1	60mV	_	50kΩ	22 50k 50k 77 77
328		J	<u></u>	RØ	

BA7049S/BA7049FS

Pin No.	Function	Pin voltage		Input/output	Equivalent circuit
		DÇ	AC	resistance	
23	Y, IN	2.0V	400mVpp	20kΩ	20k 20k 100 JB 100 µ A 23
24	EE. CTL	0.5V	_	2MΩ or more	24 10k 220k 22.5k 22.5k 22.5k 22.5k 40k 20k 20k 20k 20k 22.5k 40k

Circuit operation

Recording

A balance modulator is used to convert the subcarrier frequency of the input chroma signal to PAL-format subcarrier frequency.

The local oscillator used for frequency conversion uses a x'tal to generate a frequency of four times the required frequency. This frequency is divided-by-four Internally using a frequency divider. Signals converted to the PAL-format subcarrier frequency by this IC are input to a chroma processing IC equipped with a PAL filter. By operating the circuit in NTSC mode for NTSC signals and in PAL mode for PAL-M and PAL-N signals, a low-frequency output signal in the converted format is obtained.

NTSC/PAL format converters

BA7049S/BA7049FS

Circuit operation

Playback During playback, an NTSC or PAL signal with a subcarrier frequency of 4.433619MHz is output. Using the opposite procedure to that of recording, these signals are con

verted to NTSC, PAL-M, or PAL-N subcarrier-frequency signals.

Fig.2

ROHM

BA7049S/BA7049FS

Operation notes

External components for the x'tal oscillator The external circuit for the oscillator is shown below. The capacitor values are for reference only. Determine suitable values for the capacitors after consulting with the crystal manufacturer.

ROHM

BA7049S/BA7049FS

Fig. 8 1/4 frequency divider frequency vs. ambient temperature characteristics.

ROHM

.

332

÷

Notes

- The contents described in this catalogue are correct as of March 1997.
- No unauthorized transmission or reproduction of this book, either in whole or in part, is permitted.
- The contents of this book are subject to change without notice. Always verify before use that the contents are the latest specifications. If, by any chance, a defect should arise in the equipment as a result of use without verification of the specifications, ROHM CO., LTD., can bear no responsibility whatsoever.
- Application circuit diagrams and circuit constants contained in this data book are shown as examples of standard use and operation. When designing for mass production, please pay careful attention to peripheral conditions.
- Any and all data, including, but not limited to application circuit diagrams, information, and various data, described in this catalogue are intended only as illustrations of such devices and not as the specifications for such devices. ROHM CO., LTD., disclaims any warranty that any use of such device shall be free from infringement of any third party's intellectual property rights or other proprietary rights, and further, assumes absolutely no liability in the event of any such infringement, or arising from or connected with or related to the use of such devices.
- Upon the sale of any such devices; other than for the buyer's right to use such devices itself, resell or otherwise dispose of the same; no express or implied right or license to practice or commercially exploit any intellectual property rights or other proprietary rights owned or controlled by ROHM CO., LTD., is granted to any such buyer.
- The products in this manual are manufactured with silicon as the main material.
- The products in this manual are not of radiation resistant design.

The products listed in this catalogue are designed to be used with ordinary electronic equipment or devices (such as audio-visual equipment, office-automation equipment, communications devices, electrical appliances, and electronic toys). Should you intend to use these products with equipment or devices which require an extremely high level of reliability and the malfunction of which would directly endanger human life (such as medical instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers, or other safety devices) please be sure to consult with our sales representative in advance.

- Note when exporting
 - It is essential to obtain export permission when exporting any of the above products when it falls under the category of strategic material (or labor) as determined by foreign exchange or foreign trade control laws.
 - Please be sure to consult with our sales representatives to ascertain whether any product is classified as a strategic material.