Optical disc ICs

4-channel driver and power controller BA6893AK

The BA6893AK is a 4-channel driver and power supply that includes the reset, recharge, and shock detection circuits required for portable CD players on a single IC. The driver block power supply uses the on-chip switching regulator, making this component an ideal choice for low-power sets.

ApplicationsPortable CD players

Features

- 1) Four H-bridge driver circuits.
- 2) DC to DC converter control circuit.

• Absolute maximum ratings (Ta = 25° C)

- 3) Reset circuit.
- 4) Shock detection circuit.
- 5) Battery recharge circuit.

- 6) Ripple filter circuit.
- 7) Audio reference output.
- 8) Low power consumption.
- 9) Thermal shutdown circuit.
- 10) QFP44 package.

Parameter	Symbol	Limits	Unit
Power supply voltage	Vcc	13.5	V
Drive output current	lo	500	mA
Power dissipation	Pd	625 *	mW
Operating temperature	Topr	-30~+85	C
Storage temperature	Tstg	-85~+150	Ĵ

* Reduced by 5mW for each increase in Ta of 1 $^\circ C$ over 25 $^\circ C.$

• Recommended operating conditions (Ta = 25° C)

Parameter	Symbol	Min.	Тур.	Max.	Unit
Control circuit power supply voltage	YSYS1	2.7	3.2	5.5	V
Pre-drive circuit power supply voltage	YSYS2	2.7	3.2	5.5	V
H-bridge power supply voltage	HVcc	_	PWM	BATT	V
Battery power supply voltage	BATT	1.5	2.4	8.0	V
Recharge circuit power supply voltage	CHGVcc	3.0	4.5	8.0	V
Ambient temperature	Та	-10	25	70	Ĵ

Block diagram

Pin descriptions

Pin No.	Pin name	Function	Pin No.	Pin name	Function
1	BSEN	Battery voltage monitor	23	BRAKE1	Channel 1 brake
2	BATT	Battery power supply input	24	OUT4R	Channel 4 negative output
3	RESET	Reset detect output	25	OUT4F	Channel 4 positive output
4	DEAD	Dead-time setting	26	OUT3R	Channel 3 negative output
5	SW	Transistor drive for voltage multiplier	27	OUT3F	Channel 3 positive output
6	EO	Error amplifier output	28	POWGND	Power block power supply ground
7	EI	Error amplifier input	29	OUT2F	Channel 2 positive output
8	SPRT	Short protection setting	30	OUT2R	Channel 2 negative output
9	СТ	Triangular-wave output	31	OUT1F	Channel 1 positive output
10	AREF	Audio reference output	32	OUT1R	Channel 1 negative output
11	CRP	Ripple filter smoothing	33	RCHG	Charge current setting
12	VSYS1	Control circuit power supply input	34	AMUTE	Reset invert output
13	PRP	Transistor drive for ripple filter	35	EMP	Empty detect output
14	AVcc	Ripple filter output	36	HVcc	H-bridge power supply input
15	VSYS2	Pre-drive power supply input	37	PSW	PWM transistor drive
16	VREF	Reference voltage input	38	CLK	External clock synchronizing input
17	IN3	Channel 3 control signal input	39	START	Voltage multiplier DC/DC converter start
18	IN4	Channel 4 control signal input	40	OFF	Voltage multiplier DC/DC converter OFF
19	MUTE34	Channel 3 and 4 mute	41	CHGVcc	Charging circuit power supply input
20	IN2	Channel 2 control signal input	42	SEL	Empty detect level switch
21	MUTE2	Channel 2 mute	43	PREGND	Pre section power supply ground
22	IN1	Channel 1 control signal input	44	PWMFIL	PWM phase compensation

Note: The positive and negative outputs are the polarity with respect to the input.

Optical disc ICs

BA6893AK

Input / output circuits

Pin No.	Pin name	Equivalent circuit				
1	BSEN	BATT 771k 71k 16.5k 19k 11.5k 19k 11.5k				
2	BATT	Battery power supply				
3	RESET	VSYS1 VSYS1				
4	DEAD	CSYS1 18k 18k 50k 50k 777 777 777 777				
5	SW	5				

Pin No.	Pin name	Equivalent circuit
6	EO	
7	EI	VSYS1 VSYS1
8	SPRT	VSYS1 VSYS1
9	СТ	3 420K 420K 3 420K 3 420K 420

Pin No.	Pin name	Equivalent circuit			
10	AREF	$\begin{array}{c} VSYS1 \\ \hline \\ 10 \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $			
11	CRP	USYS1 U U U U U U U U U U U U U U U U U U U			
12	VSYS1	Control circuit power supply			
13	PRP	VSYS1 VSYS1			
14	AVcc	(14)			
15	VSYS2	Driver pre-stage power supply			

Pin No.	Pin name	Equivalent circuit
16	VREF	VSYS2 16 75k 75k 75k 75k 75k 75k
17 18 20 22	IN3 IN4 IN2 IN1	VSYS2 11k 11k 11k 11k 11k 11k 11k 11k 11k 11k 11k 20pin=7.5k
19 21 23	MUTE34 MUTE2 BRAKE1	$\begin{array}{c} VSYS2 \\ \hline 19 \\ \hline 21 \\ \hline 33 \\ \hline 77 \\ \hline 75k \\ \hline 75k \\ \hline 75k \\ \hline 77k \\ 77k \\ \hline 77k \\ 77k \\$

Pin No.	Pin name	Equivalent circuit			
24 25 26 27 28 29 30 31 32 36	OUT4R OUT3R OUT3F POWGND OUT2F OUT2R OUT1F OUT1R HV∝				
33	RCHG	GHGVcc 950 950 777			
34	AMUTE	34			
35	EMP				

Pin No.	Pin name	Equivalent circuit
37	PSW	BATT BATT 37 4 54 777
38	CLK	VSYS1 VSYS1 VSYS1 VSYS1
39	START	39 39 30 30 30 30 30 30 30 30 30 30
40	OFF	
41	CHGVcc	Charging circuit power supply

Pin No.	Pin name	Equivalent circuit
42	SEL	
43	PREGND	Pre block ground
44	PWMFIL	$\begin{array}{c} VSYS1 \\ \downarrow \\ 44 \\ \hline \\ 777 \\ 77$

Optical disc ICs

BA6893AK

•Electrical characteristics	(unless otherwise noted, Ta = 25°C, BATT = 2.4V, VSYS1 = VSYS2 = 3.2V, VREF = 1.6V,
	CHGVcc = 0V, and $fCLK = 88.2kHz$)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions	
[Total circuit]	[Total circuit]						
BATT standby current	Ist	_	0	3	μA	BATT=9V, VSYS1=VSYS2=VREF=0V	
BATT no-load power supply current	Іват	_	2.5	4.0	mA	HVcc=0.45V, MUTE34=3.2V	
VSYS1 no-load power supply current	Isys1	-	3.3	4.5	mA	HVcc=0.45V, MUTE34=3.2V, EI=0V	
VSYS2 no-load power supply current	lsys2	_	4.1	5.5	mA	HVcc=0.45V, MUTE34=3.2V	
CHGVcc no-load power supply current	Icavcc	-	0.65	2.0	mA	CHGVcc=4.5V, ROUT=OPEN	
[H-bridge drive block]							
Channels 1, 3, 4, and 2	GvC134	12	14	16	dB		
voltage gain	Gvc2	21.5	23.5	25.5	dB		
Positive / negative voltage gain differential	∆Gvc	-2	0	2	dB	-	
Channels 1, 3, 4, and 2 IN pin	RIN134	9	11	13	kΩ	IN-1 Zond 1 9V	
input resistance	RIN2	6	7.5	9	kΩ		
Maximum output amplitude	Vout	1.9	2.1	_	v	$R_L=8\Omega$, $HV_{CC}=BATT=4V$, IN=0-3.2V	
Lower-side transistor saturation voltage	VSATL	-	240	400	mV	Io=-300mA, IN=0 and 3.2V	
Upper-side transistor saturation voltage	VSATU	-	240	400	mV	Io=300mA, IN=0 and 3.2V	
Input offset voltage	Voi	-8	0	8	mV	-	
Channels 1, 3, 4, and 2	V00134	-50	0	50	mV		
output offset voltage	V002	-130	0	130	mV	VREF=IN=1.6V	
Dead-band width	Vdb	-10	0	10	mV	-	
BRAKE1 on threshold voltage	VBRON	2.0	_	-	V	IN1=1.8V	
BRAKE1 off threshold voltage	VBROFF	-	-	0.8	V	IN1=1.8V	
MUTE2 on threshold voltage	V _{M2ON}	2.0	-	-	V	IN2=1.8V	
MUTE2 off threshold voltage	Vm20ff	-	_	0.8	V	IN2=1.8V	
MUTE34 on threshold voltage	Vm340n	-	-	0.8	V	IN3=IN4=1.8V	
MUTE34 off threshold voltage	VM34OFF	2.0	_	_	V	IN3=IN4=1.8V	
VREF on threshold voltage	VREFON	1.2	—	—	V	IN1=IN2=IN3=IN4=1.8V	
VREF off threshold voltage	VREFOFF	_	_	0.8	V	IN1=IN2=IN3=IN4=1.8V	
BRAKE1 brake current	BRAKE1	4	7	10	mA	Current difference between when BRAKE1 pin is high level and low level.	

ONot designed for radiation resistance.

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
[PWM power supply drive]						
PSW sink current	IPSW	10	13	17	mA	IN1=2.1V
HVcc level shift voltage	VSHIF	0.35	0.45	0.55	v	IN1=1.8V, HVcc-OUT1F
HVcc leak current	Ін∟к	_	0	5	μA	HVcc=9V, VSYS1=VSYS2=BATT=0V
PWM amp transfer gain	Gрwm	1 / 60	1 / 50	1 / 40	1/kΩ	IN1=1.8V, HVcc=1.2V~1.4V
[DC/DC converter]						
〈Error amplifier block〉						
VSYS1 threshold voltage	VSITH	3.05	3.20	3.35	V	_
EO output high level voltage	VEOH	1.4	1.6	-	V	EI=0.7V, lo=-100 µ A
EO output low level voltage	VEOL	_	_	0.3	v	EI=1.3V, Io=100 µ A
\langle Short protect block \rangle	1					
SPRT voltage normal	VSPR	_	0	0.1	v	EI=1.3V
SPRT current 1, EO=high level	SPR1	6	10	16	μA	EI=0.7V
SPRT current 2, OFF=low level	ISPR2	12	20	32	μA	EI=1.3V, OFF=0V
SPRT current 3, overload	ISPR3	12	20	32	μA	EI=1.3V, BATT=9.5V
SPRT pin impedance	RSPR	175	220	265	kΩ	_
SPRT threshold voltage	VSPTH	1.10	1.20	1.30	v	EI=0.7V, CT=0V
Over voltage protection detection voltage	VHVPR	8.0	8.4	9.0	v	BSEN voltage
〈Transistor drive〉	1	1	1		1	
SW output high level voltage 1	Vsw1н	0.78	0.98	1.13	v	BATT=CT=1.5V VSYS1=VSYS2=OV, lo=-2mA, at start
SW output high level voltage 2	Vsw2H	1.0	1.50	_	v	CT=0V, Io=-10mA, EI=0.7V, SPRT=0V
SW output low level voltage 2	Vsw2L	_	0.3	0.45	V	CT=2V, lo=10mA
SW oscillator frequency 1	fsw1	65	80	95	kHz	CT=470pF, VSYS1=VSYS2=0V, At start
SW oscillator frequency 2	fsw2	60	70	82	kHz	CT=470pF, CLK=0V
SW oscillator frequency 3	fsw3	_	88.2	_	kHz	CT=470pF
SW minimum pulse width	TSWMIN	0.01	_	0.6	μsec	CT=470pF, EO=0.5→0.7V sweep
Pulse duty at start	Dsw1	40	50	60	%	CT=470pF, VSYS1=VSYS2=ON
Max. duty at free run	Dsw2	70	80	90	%	EI=0.7V, CT=470pF, CLK=0V
Max. duty with synchronized CLK	Dsw3	65	75	85	%	EI=0.7V, CT=470pF

ONot designed for radiation resistance.

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
$\langle {\sf Dead} ext{-time block} angle$	·		·			
Dead pin impedance	RDEAD	52	65	78	kΩ	-
Dead pin output voltage	VDEAD	0.78	0.88	0.98	V	-
<pre>(Interface block)</pre>						·
OFF pin threshold voltage	Vofth	-	_	VSYS1 -2.0	v	EI=1.3V
OFF pin bias current	IOFF	75	95	115	μA	OFF=0V
START pin off threshold voltage	Vstath1	-	_	BATT 	v	VSYS1=VSYS2=0V, CT=2V
START pin off threshold voltage	VSTATH2	BATT 0.3	_	-	v	VSYS1=VSYS2=0V, CT=2V
START pin bias current	ISTART	13	16	19	μA	START=0V
CLK pin threshold high level voltage	VCLKTHH	2.0	_	-	v	-
CLK pin threshold low level voltage	VCLKTHL	_	_	0.8	v	-
CLK pin bias current	Іс∟к	_	_	10	μA	CLK=3.2V
(Start circuit)	•					
Start switch voltage	VSTNM	2.3	2.5	2.7	v	VSYS1=VSYS2=0V→3.2V, START=0V
Start switch hysteresis width	VSNHS	130	200	300	mV	START=0V
Discharge release voltage	VDIS	1.63	1.83	2.03	V	-
[Empty detect block]						
Empty detect voltage 1	VEMPT1	2.1	2.2	2.3	V	VSEL=0V
Empty detect voltage 2	Vempt2	1.7	1.8	1.9	V	ISEL=-2 µ A
Empty detect hysteresis 1	VEMHS1	25	50	100	mV	VSEL=0V
Empty detect hysteresis 2	VEMHS2	25	50	100	mV	ISEL=-2 µ A
EMP output voltage	VEMP	-	-	0.5	V	Io=1mA, BSEN=1V
EMP output leak current	IEMPL	-	-	1.0	μA	BSEN=2.4V
BSEN input resistance	RBSEN	17	23	27	kΩ	VSEL=0V
BSEN leak current	IBSNL	_	_	1.0	μA	VSYS1=VSYS2=0V, BSEN=4.5V
SEL detect voltage	VSELTH	1.5	_	_	v	VSELTH=BATT-SEL, BSEN=2V
SEL detect current	ISELT	-2	-	_	μA	-

ONot designed for radiation resistance.

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
[Reset circuit]						
VSYS1 pin reset threshold voltage ratio	HSRT	85	90	95	%	Ratio to error amplifier threshold voltage
Reset detect hysteresis width	VRSTHS	25	50	100	mV	-
RESET output voltage	Vrst	_	_	0.5	V	lo=1mA, VSYS1=VSYS2=2.8V
RESET pin pull-up resistance	Rrst	72	90	108	kΩ	_
AMUTE output voltage 1	VAMT1	BATT —0.4	_	BATT	v	lo=-1mA VSYS1=VSYS2=2.8V
AMUTE output voltage 2	Vamt2	BATT —0.4	_	BATT	v	lo=-1mA VSYS1=VSYS2=0V, START=0V
AMUTE pull-down resistance	Вамт	77	95	113	kΩ	_
[Ripple filter]		1	1	1	I	
Voltage between AVcc and VSYS1	VAVCC	0.22	0.24	0.27	v	lo=−5mA, external PNP, CRP=OPEN
CRP input resistance	RCRP	18	22	26	kΩ	_
AVcc discharge current	lavcc	1.7	2.5	4.0	mA	VSYS1=VSYS2=2.8V
PRP pull-up resistance	RPRP	21	27	33	kΩ	CRP=2.8V, AVcc=3.0V
PRP drive current sink	IPRP	150	400	600	μA	CRP=3.0V, AVcc=2.8V
[Charge circuit block]						
RCHG bias voltage	VRCHG	0.71	0.81	0.91	v	CHGV _{CC} =4.5V, RCHG=1.8k Ω
RCHG output resistance	RRCHG	0.75	0.95	1.20	kΩ	CHGVcc=4.5V, RCHG=0.5 and 0.6V
SEL leak current 1	ISELLK	-	-	1.0	μA	CHGVcc=4.5V, RCHG=OPEN
SEL leak current 2	ISELLK	_	_	1.0	μA	CHGVcc=0.6V, RCHG=1.8kΩ
SEL saturation voltage	VSELCG	-	0.45	1.0	v	CHGVcc=4.5V, Io=300mA, RCHG=0Ω
[Audio reference circuit]						
AREF output voltage	VAREF	1.4	1.5	1.6	V	AVcc=3V
AREF output impedance	RAREF	3.3	4.0	4.7	kΩ	AVcc=3V
AREF discharge current	IAREF	1.7	2.5	4.0	mA	YSYS1=VSYS2=2.6V

 $\bigcirc Not$ designed for radiation resistance.

Circuit operation

(1) Empty detector block

When the voltage applied to the BSEN pin falls below the detector voltage, EMP (pin 35) goes from high level to low level (open-collector output). The detector voltage has 50mV (Typ.) of hysteresis to prevent output chattering. Use SEL (pin 42) to switch the detection voltage as shown below.

SEL	Detect voltage	Return voltage	
۳۲.	2.2V (Typ.)	2.25V (Typ.)	
HIGH-Z	1.8V (Typ.)	1.85V (Typ.)	

(2) Reset circuit block

At about 90% (Typ.) of the DC/DC comparator output voltage, RESET (pin 3) goes from low level to high level, and AMUTE (pin 34) goes from high level to low level. The reset voltage has 50mV (Typ.) of hysteresis to prevent output chattering.

(3) Ripple filter circuit

By connecting an external PNP transistor, a voltage of (VSYS1 0.24)V is supplied from AV_{CC} (pin 14). Connect a ripple bypass capacitor between CRIP (pin 11) and GND.

(4) Audio reference circuit block

One half of the AVcc voltage (pin 14) generated by the ripple filter circuit is output from AREF (pin 10). The output impedance is $4.0k\Omega$ (Typ.).

(5) Charging circuit block

The power supply for the charging circuit block is $CHGV_{CC}$ (pin 41), and is independent from the other circuits. The resistance between RCHG (pin 33) and GND sets the charging current. This current is drawn from SEL.

A thermal shutdown circuit is provided, and when the chip temperature reaches $150^{\circ}C$ (Typ.) the charging current is cut. The chip starts operating again at about $120^{\circ}C$ (Typ.).

(6) DC/DC converter block

1) Output voltage

A 3.2V (Typ.) voltage multiplier circuit can be constructed using external components. This voltage can be varied with the addition of an external resistor. The setting method is as follows.

$$VSYS1 = 1.20 \times \frac{\frac{R1 \cdot R3}{R1 + R3} + \frac{R2 \cdot R4}{R2 + R4}}{\frac{R2 \cdot R4}{R2 + R4}}$$
(V)

2) Short protect function

When the error amplifier output (pin 6) has switched to the high-level state, SPRT (pin 8) is charged, and when the voltage reaches 1.2V (Typ.), the SW (pin 5) switching stops. The time until switching stops is set by the capacitor connected to SPRT (pin 8) according to the following formula.

$$t = CSPRT \times \frac{VTH}{ISPRT}$$
 (sec)
(VTH = 1.20V, ISPRT = 10µA

3) Soft start function

The soft start function operates when a capacitor is connected between DEAD (pin 4) and GND. Also, the maximum duty can be varied by connecting a resistor to pin 4.

$$t = CDEAD \times R$$
 (sec) (R = 65k Ω)

4) Power off function

When low-level is applied to OFF (pin 40), SPRT (pin 8) is charged, and when the voltage reaches 1.2V (Typ.), the SW (pin 5) switching stops. The time until switching stops is set by the capacitor connected to SPRT (pin 8) according to the following formula.

$$t = CSPRT \times \frac{V_{TH}}{I_{OFF}}$$
 (sec)
(V_{TH} = 1.20V, I_{OFF} = 20\muA)

5) Over voltage protection circuit

When the voltage applied to BSEN (pin 1) reaches 8.4V (Typ.), SPRT (pin 8) is charged, and when the voltage reaches 1.2V (Typ.), the SW (pin 5) switching stops. The time until switching stops is set by the capacitor connected to SPRT (pin 8) according to the following formu-

Ia.

$$t = CSPRT \times \frac{V_{TH}}{I_{HV}}$$
 (sec)
(V_{TH} = 1.20V, I_{HV} = 20\muA)

- (7) H-bridge driver block
- 1) Gain setting

The driver input resistance is $11k\Omega$ (Typ.) for channels 1, 3, and 4, and $7.5k\Omega$ for channel 2. Set the gain according to the following formula.

ch1	
ch3	$GV=20\log\left \frac{55K}{441+12}\right $ (dB)
ch4	11K+R
ch2	$GV=20\log \left \frac{110k}{7.5k+R} \right (dB)$

R: Externally-connected input resistor

The driver output stage power supply is HVCC (pin 36), and the bridge circuit power supply is VSYS2 (pin 15). Connect a bypass capacitor between these two power supplies (approximately 0.1μ F).

2) Mute function

Of the four drivers, channel 1 has a brake function, and the other channels have a mute function.

When BRAKE1 (pin 23) is set to high level, both channel 1 outputs go low level, and the circuit enters brake mode. When MUTE2 (pin 21) is set to high level, the channel 2 output is muted.

When MUTE34 (pin 19) is set to high level, the channel 3 and 4 outputs are muted.

3) VREF drop mute

When the voltage applied to VREF (pin 16) is 1.0V or less (Typ.), the driver outputs are set to high impedance.

4) Thermal shutdown

When the chip temperature reaches $150^{\circ}C$ (Typ.) the output current is cut. The chip starts operating again at about $120^{\circ}C$ (Typ.).

(8) PWM power supply drive block

This detects the maximum output level from among the four channels, and supplies the load drive power supply for the PWM.

The external components are a PNP transistor, coil, Schottky diode, and capacitor.

Application example

Fig.4

ROHM

External dimensions (Units: mm)

