Motor driver ICs

2-phase motor driver for VCR cylinder motors BA6825FS / BA6826FS

The BA6825FS and BA6826FS are direct-drive motor drivers suitable for 2-phase, full-wave linear motors. They consist of a Hall amplifier control circuit and driver circuits.

ApplicationsVCR cylinder motors

Features

- 1) Linear drive system provides low switching noise.
- 2) Constant supply voltage pin for hall devices.
- High ratio of output current against control current. (4000 Typ.)
- 4) Available in compact surface-mount packages.

Block diagram

•Absolute maximum ratings (Ta = 25° C)

Parameter		Symbol	Limits	Unit	
Applid voltage		Vcc	24	V	
Power	BA6825FS	Dd	1200*1	m\\/	
dissipation	BA6826FS	Fu	1000*2		
Operating temperature		Topr	-25~+75	Ĵ	
Storage temperature		Tstg	$-55 \sim +150$	C	
Output current		Іомах.	1200* ³	mA	
Input current		IECIMax.	5	mA	
Operating temperature Storage temperature Output current Input current		Topr Tstg Іомах. Іссімах.	$ 1000*^{2} \\ -25\sim +75 \\ -55\sim +150 \\ 1200*^{3} \\ 5 $	ິ ເ mA mA	

*1, *2 When mounted on a glass epoxy board (90 X 50 X 1.6 mm). Reduced by 9.6 mW for each increase in Ta of 1°C over 25°C. Reduced by 8.0 mW for each increase in Ta of 1°C over 25°C.

*3 Should not exceed Pd or ASO values (for the current of one phase).

Recommended operating conditions

Parameter	Symbol	Limits	Unit
Operating power supply voltage	Vcc	8.0~20.0	V

●Electrical characteristics (unless otherwise noted, Ta = 25°C, Vcc = 12V)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
Supply current	lcc	—	3.3	5.0	mA	
Constant output voltage	Vreg	4.6	5.0	5.4	V	
(MDA)						
Hall element minimum input level	VINH	50	—	—	mV _{P-P}	
Hall input bias current	Івн	—	0.25	2.0	μA	leci=100 μ A
Output saturation high level voltage	Vон	10.50	10.84	-	V	lout=800mA
Output saturation low level voltage	Vol	—	1.27	2.1	V	Iout=800mA
⟨ECI (current control)⟩						
Ratio of pin-7 current	lout/ 3000		4000	5000	_	Measured at $\Delta V = 100 \text{ mV}$ and
to output current	ICONT 3000					$I = 30 \ \mu A, 50 \ \mu A$

ONot designed for radiation resistance.

Pin descriptions

Pin name	Function		
S - GND	Signal ground		
Eci	Output current control		
Vcc	Power supply		
OUTPUT2 (-)	Output		
GND2	OUTPUT2 GND		
OUTPUT2 (+)	Output		
OUTPUT1 (-)	Output		
GND1	OUTPUT1 GND		
OUTPUT1 (+)	Output		
Vreg	Constant voltage output		
Hall IN ø 1 (+)	Hall signal input		
Hall IN ø 1 (—)	Hall signal input		
Hall IN ϕ_2 (-)	Hall signal input		
Hall IN ϕ_2 (+)	Hall signal input		
FIN	Radiation FIN		

Input / output circuits

(1) Hall and Eci inputs

(Resistances, in Ω , are typical values)

Fig.1

Circuit operation

(1) The signal from the Hall device is amplified by the Hall amplifier and then supplied to the driver circuit. The driver gain, which is constant, is regulated by changing the Hall amplifier gain with the input current on the output current control pin (E_{CI} pin). The motor rotational speed is sensed by the FG, and the output of which is F / I-converted and supplied to the E_{CI} pin as a feedback signal, so that a constant rotational speed is maintained as follows :

- 1) The motor speed decreases.
- 2) The speed control IC outputs a feedback signal to the ECI pin.

Hall IN ¢ 1

(-

ROHM

3) The Hall amplifier gain increases.

Hall $IN \phi_1$ (+)

- 4) The output current increases.
- 5) The motor speed increases.

(2) Coil output

(Resistances, in Ω , are typical values)

Fig.2

(2) When the voltage on Hall IN ϕ_1 (+) is higher than the voltage on Hall IN ϕ_1 (-), an output current flows from OUT1 (-) to OUT1 (+) according to the voltage differential. When the voltage on Hall IN ϕ_1 (-) is higher, on the other hand, an output current flows from OUT1 (+) to OUT1 (-).

Similarly, when the voltage on Hall $IN\phi_2(+)$ is higher than the voltage on Hall $IN\phi_2(-)$, an output current flows from OUT2(-) to OUT2(+) according to the voltage differential. When the voltage on Hall $IN\phi_2(-)$ is higher, on the other hand, an output current flows from OUT2(+) to OUT2(-).

OUTPUT1 (-)

OUTPUT1 (+)

Λ

0

Motor driver ICs

(3) Output waveforms are shown in Fig. 5. Because of the amplifier offset, the output is left OPEN when the output signal switches from positive to negative. The output waveform is determined by the external circuit because the IC impedance increases during this transition period. Since inductive loads are usually provided, a capacitor should be connected to suppress the backlash voltage.

Operation notes

(1) Eci input

The ECI input circuit has $2V_{\text{F}}$ and a 500Ω resistor connected in series. Current is limited only by the 500Ω resistor.

(2) Hall input

Signals of 50mV (peak to peak) or greater should be applied to the Hall device input. The DC input range is between 2V and (Vreg – 1.5V). There will be no problem if

the input is centered around Vreg / 2.

Because the Hall input impedance is $1M\Omega$ or grater, any type of Hall device can be connected. No current flows when the transistor is off because the Hall input pins (+ and -) are differential.

Because the ICs are linear drivers, any DC offset in the Hall device will be amplified and appear in the output. Use Hall devices having a minimum offset. Hall devices can be connected in either series or parallel.

Fig. 6

(3) Thermal shutdown circuit

The circuit puts the driver outputs (9, 11, 12, and 14 pin) to the open state at the temperature of $175^{\circ}C$ (typical). There is a temperature difference of about $20^{\circ}C$ between the temperatures at which the circuit is activated and deactivated.

Application examples

Fig.7

