Optical disc ICs

Preservo amplifier for CD players BA6386K

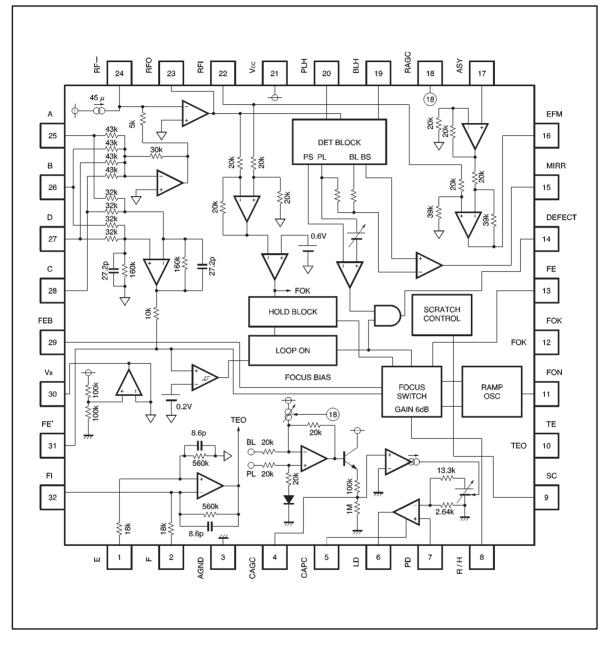
The BA6386K is a preservo amplifier for CD players. By using this paired with a ROHM DSP, a servo and main signal system can be configured with few external components and low power consumption.

ApplicationsCD players

Features

- 1) Internal RF AGC circuits.
- 2) Internal APC circuit.
- 3) Internal auto asymmetry circuit.

- 4) Internal disc defect detector.
- 5) Internal focus protect function against disc defects.


•Absolute maximum ratings (Ta = 25° C)

Parameter	Symbol	Limits	Unit
Power supply voltage	Vcc	9	v
Power dissipation	Pd	400*	mW
Operating temperature	Topr	-25~+75	ĉ
Storage temperature	Tstg	-55~+125	Ĵ

* Reduced by 4mW for each increase inTa of 1℃ over 25℃.

• Recommended operating conditions (Ta = 25° C)

Paramerter	Symbol	Limits	Unit	
Power supply voltage	Vcc	2.4~4.5	V	

Pin descriptions

Pin No.	Pin name	Function	Pin No.	Pin name	Function
1	Е	E input	17	ASY	Auto-asymmetry control input
2	F	F input	18	RAGC	For resistor for AGC threshold adjustment
3	AGND	Analog GND	19	BLH	For capacitor for bottom long
4	CAGC	For capacitor for AGC constant	20	PLH	For capacitor for peak long
5	CAPC	For capacitor for APC phase compensation	21	Vcc	Power supply
6	LD	APC amplifier output	22	RFI	RF output capacity coupling reinput
7	PD	APC amplifier input	23	RFO	RF summing amplifier output
8	R/H	For capacitor for ramp wave/loop off	24	RF-	RF summing amplifier feedback input
9	SC	For resistor for scratch depth adjustment	25	А	A input
10	TE	Tracking error output	26	В	B input
11	FON	Focus on control	27	D	D input
12	FOK	Focus OK comparator output	28	С	C input
13	FE	Focus error output 1	29	FEB	Focus error bias input
14	DEFECT	Defect signal output	30	Vв	Bias amplifier output
15	MIRR	Mirror signal output	31	FE'	Focus error output 2
16	EFM	EFM signal output	32	FI	F gain adjustment feedback

Optical disc ICs

•Electrical characteristics (unless otherwise noted, $Ta = 25^{\circ}C$ and $V_{CC} = 2.5V$)

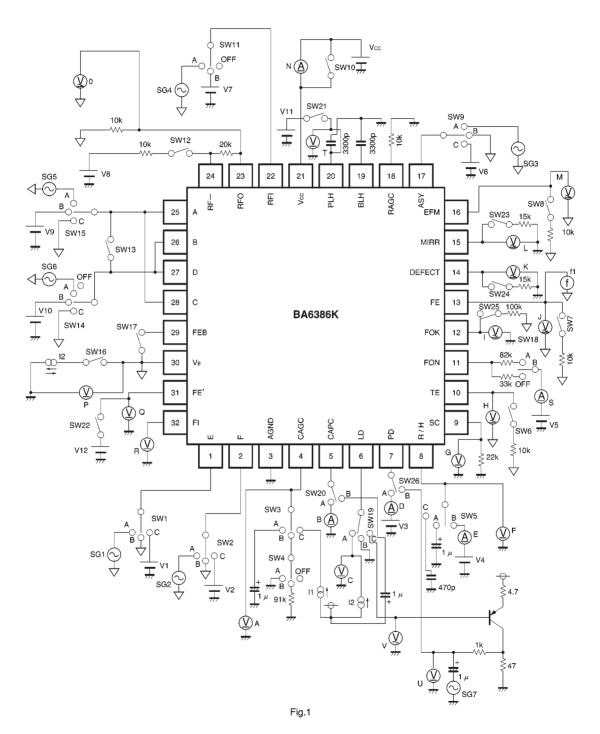
Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions	
Quiescent current	la	-	7.7	11.7	mA		
(Bias amplifier)							
Bias voltage	Vв	1.12	1.25	1.38	v	_	
Maximum output high level voltage	Іон	3.0	—	-	mA	Bias fluctuation below 200mV	
Maximum output low level voltage	lol	3.0	—	-	mA	Bias fluctuation below 200mV	
(RF amplifier)							
Output offset voltage	VOFRE	-1.02	-0.90	-0.78	v		×
Voltage gain	Gre	18.0	21.0	24.0	dB	V8=0.8V, SG5=30mV _{P-P} , 1kHz	
Maximum output high level amplitude	VOHRF	0.90	1.10	-	v	Simultaneous AC and BD input	
Maximum output low level amplitude	VOLRF	-	-1.10	-0.90	v	V9=V _B +0.25V, V _B -0.05V	*
Cutoff frequency	FCRF	_	8	-	MHz	-3dB point	
<pre>FE amplifier></pre>		•				•	
Output offset voltage	Voffe	-100	-20	60	mV		*
Voltage gain AC	GFEAC	23	26	29	dB	SG5=30mV _{P-P} , 1kHz	
Voltage gain BD	GFEBD	23	26	29	dB	SG6=30mV _{P-P} , 1kHz	
Voltage gain difference	∆Gfe	-3	0	3	dB	_	
Maximum output high level amplitude	VOHFE	0.90	1.10	-	v	Measurement with AC and BD input	
Maximum output low level amplitude	Volfe	_	-1.10	-0.90	v	$V9 (V10) = V_B \pm 0.15V$	2
Frequency characteristics	FCFE	16	19	22	dB	SG5 (SG6) =60mV _{P-P} , 60kHz	
(TE amplifier)		1	1	1		1	
Output offset voltage	Vofte	-100	-20	60	mV		*
Voltage gain E	GTEE	27	30	33	dB	SG1=30mV _{P-P} , 1kHz	
Voltage gain F	GTEF	27	30	33	dB	SG2=30mV _{P-P} , 1kHz	
Voltage gain difference	ΔGTE	-3	0	3	dB	_	
Maximum output high level amplitude	VOHTE	0.90	1.10	-	v	Measurement with E and F input	
Maximum output low level amplitude	Volte	-	-1.10	-0.90	v	$V1 (V2) = V_B \pm 0.1 V$	*
Frequency characteristics	FCTE	19	22	25	dB	SG1 (SG2) =60mV _{P-P} , 60kHz	
(FOK comparator)			1			Input pin 22	
Threshold voltage	VTHEK	0.42	-0.30	-0.18	v		¥
Output high level voltage	VOHFK	2.0	_	_	v	V7=V _B -0.42V	
Output low level voltage	Volfk	-	-	0.5	V	V7=V _B -0.18V	
Maximum operating frequency	FMXFX	45	-	-	kHz	-	
Asymmetry amplifier		1	1			1	
Output offset voltage	VOFAS	-60	_	60	mV		4
Voltage gain 1	GIAS	3	6	9	dB	Input pin 22, 80mVP-P, 1kHz	
Voltage gain 2	G2AS	8.5	11.5	14.5	dB	Input pin 17, 80mVP-P, 1kHz	
Maximum output high level amplitude	Vohas	0.90	1.10	-	V	V7=VB±0.8	
Maximum output low level amplitude	Volas	_	-1.10	-0.90	v	V6=VB±0.4	×

Optical disc ICs

BA6386K

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions	
(APC)							
Output voltage 1	V01AP	1.90	2.30	—	V	230mV input at pin 7	
Output voltage 2	V02AP	_	1.0	1.4	V	170mV input at pin 7, I2=1mA	
Reference voltage	VAPR	190	200	210	mV	_	
Frequency characteristics	Fap	-5	-1	3	dB	SG7=40mV _{P-P} , 500Hz	
〈AGC〉							
Reference voltage 1	VAGC1	0	_	100	mV	V8=0.8V, RFO=1.2V _{P.P}	
Reference voltage 2	VAGC2	180	195	210	mV	V8=0.8V, RFO=0.7V _{P-P}	
Attack time	Ratt	70	100	130	kΩ	Measurement of internal R	
Recovery time	RRCV	0.7	1.0	1.3	MΩ		
(Mirror detector)							
Output high level voltage	VOHMR	2.0	_	—	V	$R_L=15k\Omega$	
Output low level voltage	Volmr	_	_	0.5	V	_	
Minimum operating frequency	FMNMR	_	_	600	Hz	_	
Maximum operating frequency	Fмхмв	30	-	_	kHz	-	
Minimum input operating voltage	VMNMR	_	_	0.2	VP-P	-	
Maximum input operating voltage	VMXMR	1.2	-	_	VP-P	-	
(Defect detector)							
Output high level voltage	VOHDF	2.0	_	-	V	$R_L=15k\Omega$	
Output low level voltage	Voldf	_	_	0.5	V	-	
Minimum operating frequency	FMNDF	_	_	1	kHz	-	
Maximum operating frequency	FMXDF	2	_	_	kHz	_	
Minimum input operating voltage	VMNDF	_	-	0.5	VP-P	-	
Maximum input operating voltage	VMXDF	1.2	_	-	VP-P	-	
Scratch depth	Vsc	0.13	0.20	0.27	V	_	
<pre></pre>							
Period	SIRA	220	340	460	ms	-	
High level limit voltage	VLHRA	80	124	168	mV	EEO output value *	
Low level limit voltage	VLLRA	-168	-124	-80	mV	FEO output value *	
(FON pin)							
Inflow current	IFON	10.4	13.5	16.6	μA	-	
Input threshold voltage	VTHFO	1.10	1.45	1.80	V	-	
〈Loop on unit〉						·	
Loop off delay time	t OFLO	4.0	6.6	10.0	ms	_	
(FZC comparator)							
Input sensitivity level	Vfzh	320	400	480	mV	-	
Zero cross sensitivity level	VFZL	120	200	280	mV	_	

* Standards are with V_B reference.


%When FON is LOW, 8 voltage is V_B.

*The ramp wave begins at the bottom.

%The loop will not turn on when the ramp wave is at the bottom.

% Pin 8 is charged rapidiy when the loop turns on.

Measurement circuit

ROHM

12

Circuit operation

(1) RF amplifier, FOK comparator ╢ \sim 20k 0.01 µ 24 23 ้วว 45 µ . šš 5k Ŵ \sim W 30k 20k ~^^/ (25) (26) (27) (27) (27) 43k ş≷ 20K Ş ~^^/ 43k <u>م</u>مہ, 43k \forall (28 ~~~~ 43k 0.6V

Fig.2 RF and FOK block

RFO is shifted downwards from V_B by 0.9V.

However, the resistance between pins 23 and 24 is set to $20k\Omega$ and if this resistance is changed, use external components to adjust the shift back to 0.9V. Have the feedback resistance $10k\Omega$ or greater.

If the DC component of RF rises 0.3V, then FOK becomes high.

(2) FE amplifier and focus search

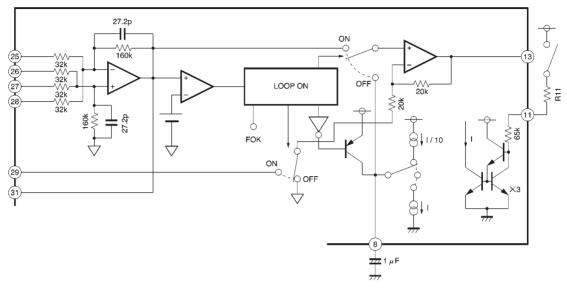
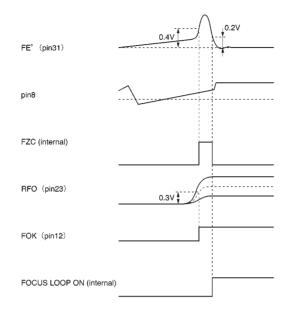


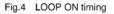
Fig.3 Focus error block

The voltage for focus search is obtained by the charging and discharging of the capacitor attached to pin 8. The charging current is I/10 and the discharging current is I. The FEO output amplitude (V_{SERCH}) at this time is determined by the formula given below.

 $V_{\text{SERCH}} = \pm I \times 15 k\Omega \times 2$ (V_B reference)

Moreover, from Fig. 3, I can be approximated by the formula given below.


$$I = \frac{V_{CC} - 1.4}{65k + R11} \times \frac{1}{3}$$


Set R11 so that I becomes $2\mu A$ or greater. Apply biasing to the focus error signal from pin 29. If no adjustment occurs, pin $29 = V_B$.

The timing charts when the focus loop turns ON or OFF are given on the next page.

1) LOOP ON timing

When FOK turns high, the fall of FE' is detected and the FOCUS LOOP turns ON.

2) LOOP OFF timing

After FOK turns low, the FOCUS LOOP turns OFF after the delay T (s) shown in the figure below.

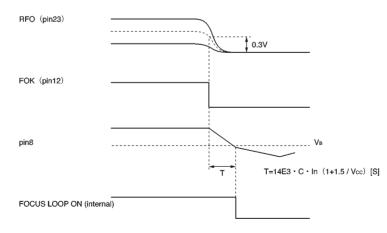


Fig.5 LOOP OFF timing

(3) APC block and AGC block

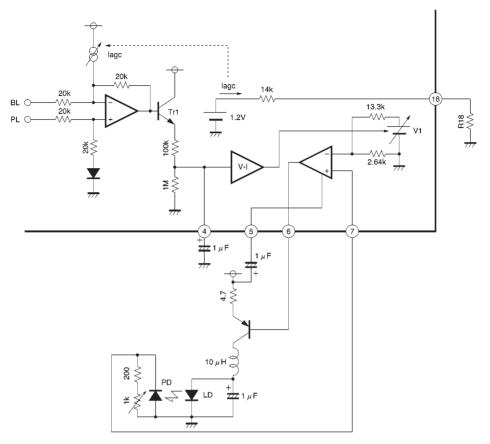
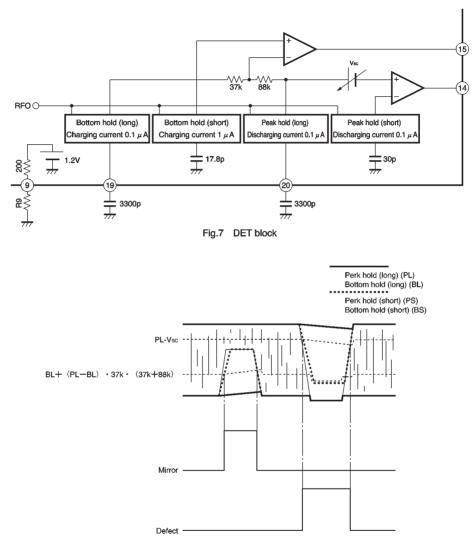


Fig.6 APC and AGC blocks


The initial setting for V1 is 1.2V. When PL-BL (the RF AC amplitude) exceeds a certain value (V_{AGC}), then AGC lowers V1 and suppresses the laser power. The value of V_{AGC} is lagc \times 20k, where lagc is set by the formula given below.


$$lagc = \frac{1.2}{1.4k + R18}$$

When R18 = 10k Ω , lagc = 50 μ A and V_{AGC} = 1V. When defect turns high, Tr1 turns OFF.

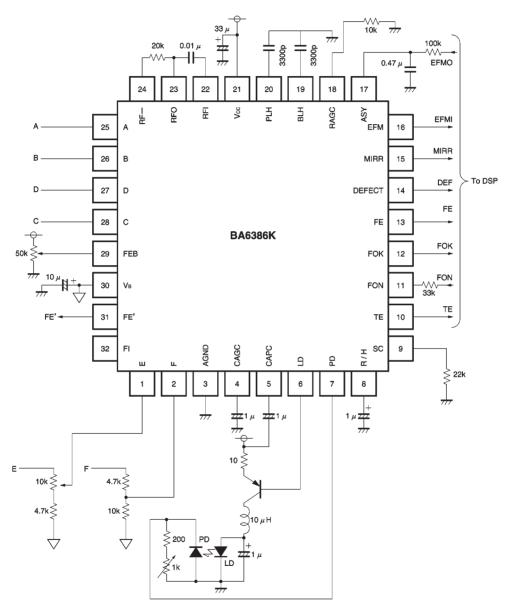
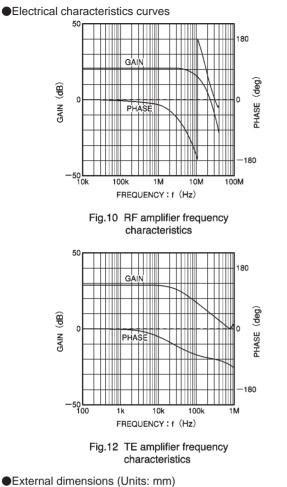
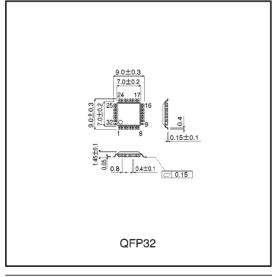
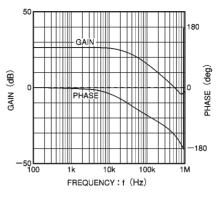
(4) DET block

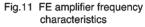
When defect is high, the bottom hold (long) charging current is 50μ A. The scratch depth (Vsc) can be adjusted by changing the resistance at pin 9.

The peak hold voltage will not go below (GND + 0.9V) and the bottom hold voltage will not go below (Vcc - 0.9V).

$$V_{SC} = \frac{1.2}{R9 + 200} \times 4k$$

Application example


Fig.9

