4-channel H-bridge type BTL driver for CD players
 BA6299FP

The BA6299FP is a 4-channel H -bridge BTL driver for CD player motors and actuators. The 5 V regulator and internal standard operational amplifier make this IC suited to a broad range of applications.

- Applications

CD players and CD-ROM drives

- Features

1) HSOP 2B-pin package allows for miniaturization of applications.
2) Wide dynamic range.
3) Low number of external components
4) Driver gain is adjustable with a single attached resistor.
5) Internal 5 V regulator. (requires attached PNP tran sistor)
6) Internal standard operational amplifier.
7) Internal thermal shutdown circuit

Block diagram

-Pin description

Pin No.	Pin name	Function
1	VIN1	Driver channel 1 input
2	VIN1'	Input for changing driver channel 1 gain
3	VIN2	Driver channel 2 input
4	VIN2'	Input for changing driver channel 2 gain
5	OPOUT	Operational amplifier output
6	OPIN-	Operational amplifier negative input
7	OPIN+	Operational amplifier positive input
8	GND	Substrate ground
9	Vcc	Power supply
10	BIAS	Bias input
11	VO2-	Driver channel 2 negative output
12	VO2+	Driver channel 2 positive output
13	VO1-	Driver channel 1 negative output
14	VO1+	Driver channel 1 positive output
15	VO4+	Driver channel 4 positive output
16	VO4-	Driver channel 4 negative output
17	VO3+	Driver channel 3 positive oulput
18	VO3-	Driver channel 3 negative output
19	MUTE	Mute control
20	Voc	Power supply
21	GND	Substrate ground
22	RGND	Regulator ground
23	REGB	Connect to base of attached transistor
24	REGOUT	5 V output (connect to base of attached transistor collector)
25	VIN3'	Input for changing driver channel 3 gain
26	VIN3	Driver channel 3 input
27	VIN4'	Input for changing driver channel 4 gain
28	VIN4	Driver channel 4 input

Note) Positive outpul' and 'negative output' indicate the phase relative to input.

- Input/output circuit

Fig. 1

- Absolute maximum values $\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Limits	Unit
Power supply voltage	Vcc	18	V
Power dissipation	Pd	1.7*1	W
Operating temperature	Topr	-30~85	${ }^{\circ} \mathrm{C}$
Storage temperature	Tstg	-55~150	${ }^{\circ} \mathrm{C}$

* 1 When mounted on $50 \times 50 \times 1.0 \mathrm{~mm}$ phenol paper PCE
Reduced by 13.6 mW for each incresse in Ta of $1^{\circ} \mathrm{C}$ over $25^{\circ} \mathrm{C}$.
-Recommended operating conditions ($\mathrm{Ta}=25^{\circ} \mathrm{C}$)

Parameter	Symbal	Limits	Unit
Power supply voltage	Vcc	$6 \sim 11^{* 2}$	V
$* 24 \cdot 11 \mathrm{~V}$ when regulator not used			

Optical disc ICs
-Electrical characteristics (Unless otherwise noted, $\mathrm{Ta}_{\mathrm{a}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=8 \mathrm{~V}, \mathrm{RL}=8 \Omega$)

Parameter	Symbol	Min.	Typ.	Max.	Unit	Conditions
(Driver)						
Quiescent current	10	2.5	5.0	7.5	mA	No load
Input offset voltage	V_{0}	-5	0	5	mV	
Output offset voltage	V_{∞}	-5	0	5	mV	
Dead zone width	V_{Dg}	10	20	30	mV	(Total for positive and negative)
Maximum output amplitude.	Vow	5.6	6.0	-	V	Differential output
Vollage gain	Gve	7.0	9.5	11.5	dB	Vin $=500 \mathrm{mV} \mathrm{DC}$, , differential output
Positive and negative voltage differential gain	Δ Gve	-0.9	0	0.9	dB	Vin $=500 \mathrm{mV} \mathrm{DC}$, differential output
Ripple rejection	RR	-	80	-	dB	$\mathrm{Vin}=0.1 \mathrm{~V} \mathrm{mss}, 100 \mathrm{~Hz}$
Mute-off voltage	Vmoff	2.0	-	-	V	
Mute-on voltage	Vmon	-	-	0.5	V	
(5 V regulator)						
Output voltage	VaEs	4.75	5.00	5.25	V	$\mathrm{L}=100 \mathrm{~mA}$
Output load variation	$\Delta V_{\text {fl }}$	-50	0	10	mV	$\mathrm{IL}=0 \sim 200 \mathrm{~mA}$
Input variation	$\Delta \mathrm{Vvcc}$	-10	0	40	mV	$(\mathrm{V} C C 666=6 \sim 11 \mathrm{~V}) \mathrm{IL}=100 \mathrm{~mA}$
Drop voltage	Voif	-	0.3	0.6	V	$\mathrm{V}_{C C}=4.7 \mathrm{~V}, \mathrm{IL}=200 \mathrm{~mA} * 1$
Vreg amplifier output current	latg	8	20	-	mA	$\mathrm{V}_{C C}=4.7 \mathrm{~V}$, When 3 V is added $* 2$
〈Operational amplifier)						
Offset voltage	Vorop	-5	0	5	mV	
Input bias current	leop	-	-	300	пA	
High-level output voltage	Vatop	6.5	7.2	-	V	
Low-level output voltage	Valop	-	-	1.8	V	
Output drive current (sink)	Isink	10	40	-	mA	50@at Voc
Output drive current (source)	IsCurc:	10	40	-	mA	50@at GND
Open loop vollage gain	Gvo	-	72	-	dB	Vin $=-75 \mathrm{dBV}$, 1kHz
Slew rate	Sf	-	1	-	V/us	

*2 2 Pin $24=0$ open

- Circuit operation

1. Driver
Inputs to the IC are the focus tracking error signal from the servo preamplifier and the control signal from the motor. The input signals normally center on 2.5 V . Polarity is switched when a signal is greater or less than the bias voltage. When polarity is switched, power
transistors Q1 and Q4 or Q2 and Q3 turn on. Power transistor Q1 or Q3, whichever is turned on, is driven by the full wave rectified signal and the level shifted signal, and supplies current to the load. When there is no input, both output pins are at the GND level.

Fig. 2

This is a typical series regulator that generates a referA standard 4558 type.
ence voltage internally. A PNP Iow saturation transistor must be connected.

Fig. 3

Application example

Fig. 4
-Operation notes

1. The BA6299FP has an internal thermal shutdown circuit. Output current is muted when the chip temperature exceeds $175^{\circ} \mathrm{C}$ (typically).
2. The output current can be muted when the mute pin (19 pin) voltage is opened or lowered below 0.5 V .
3. Output is muted when the bias pin (10 pin) voltage drops below 1.4 V (typically). Make sure that this p in is at 1.6 V or higher under normal operating conditions.
4. All four driver output channels are muted during thermal shutdown, muting and a drop in bias pin voitage. No other components are muted.
5. Dead zone width is determined as follows: Dead zone width =input resistance $\times 1 \mu \mathrm{~A}$ For this reason, when using the built-in input resistor ($10 \mathrm{k} \Omega$), the dead zone becomes 10 mV (Typ. single-sided). Because input resistance and $1 \mu \mathrm{~A}$
temperature characteristics are canceled, there is virtually no variation due to temperature as long as the internal input resistor is used. However, a dead zone like that defined by the above equation occurs when an external resistor is used to change gain. Temperature change is typically -4600 ppm per degree, and gain change is typically 4600ppm per degree.
6. Be sure to connect the IC to a $0.1 \mu \mathrm{~F}$ bypass capacitor to the power supply, at the base of the IC.
7. Because of the gain adjustment pin's high gain, connecting a long wire to it may result in output oscillation due to free capacitance. Use caution when designing wires.
8. The capacitor between regulator output (24 pin) and GND also serves to prevent oscillation of the IC, so select one with good temperature characteristics.

Thermal derating curve

AMBIENT TEMPERATURE: T (${ }^{(C)}$)
When mounted on $50 \times 50 \times 1.0 \mathrm{~mm}$ phenol paper PCB.

- Electrical characteristics curve

input voltage: Vin (V)

Fig. 6 Driver I/O characleristics (power supply variation)

input voltage: vin (v)

Fig. 7 Driver I/O characteristics (load variation)

infut voltage: yin (v)
Fig. 8 Dead zone l/O characteristics

Fig. 11 Regulator voltage vs temperalure

LORD RESISTANCE: RL (Ω)
Fig. 9 Load resistance vs maximum output amplitude

Fig. 10 Driver supply voltage vs voltage gain

Fig. 13 Operational amplifier (open loop characleristics)

External dimensions (Units: mm)

