4-channel H-bridge type BTL driver for CD players BA6299FP

The BA6299FP is a 4-channel H-bridge BTL driver for CD player motors and actuators. The 5V regulator and internal standard operational amplifier make this IC suited to a broad range of applications.

Applications

CD players and CD-ROM drives

Features

426

- 1) HSOP 28-pin package allows for miniaturization of applications.
- 2) Wide dynamic range.
- 3) Low number of external components.
- Driver gain is adjustable with a single attached resistor.
- 5) Internal 5V regulator. (requires attached PNP transistor)
- 6) Internal standard operational amplifier.
- 7) Internal thermal shutdown circuit.

rohm

Pin description

Pin No.	Pin name	Function			
1	VIN1	Driver channel 1 input			
2	VIN1'	Input for changing driver channel 1 gain			
3	VIN2	Driver channel 2 input			
4	VIN2'	Input for changing driver channel 2 gain			
5	OPOUT	Operational amplifier output			
6	ÓPIN-	Operational amplifier negative input			
7	OPIN+	Operational amplifier positive input			
в	GND	Substrate ground			
9	Vcc	Power supply			
10	BIAS	Bias input			
11	VO2-	Driver channel 2 negative output			
12	VO2+	Driver channel 2 positive output			
13	V01-	Driver channel 1 negative output			
14	V01+	Driver channel 1 positive output			
15	V04+	Driver channel 4 positive output			
16	VO4-	Driver channel 4 negative output			
17	V03+	Driver channel 3 positive output			
18	VO3-	Driver channel 3 negative output			
19	MUTE	Mute control			
20	Vcc	Power supply			
21	GND	Substrate ground			
22	RGND	Regulator ground			
23	REGB	Connect to base of attached transistor			
24	REGOUT	5 V output (connect to base of attached transistor collector)			
25	VIN3'	Input for changing driver channel 3 gain			
26	VIN3	Driver channel 3 input			
27	VIN4'	Input for changing driver channel 4 gain			
28	VIN4	Driver channel 4 input			

BA6299FP

Optical Disc ICs

Note) Positive output' and 'negative output' indicate the phase relative to input.

ROHM

427

BA6299FP

Fig. 1

●Absolute maximum values (Ta=25℃)

Parameter	Symbol	Limits	Unit
Power supply voltage	Vcc	18	v
Power dissipation	Pd	1.7*1	w
Operating temperature	Topr	-30~85	Ċ
Storage temperature	Tstg		<u>3</u>

*1 When mounted on 50 $\,\times$ 50 \times 1.0 mm phenol paper PCB.

Reduced by 13.6 mW for each increase In Ta of 1°C over 25°C.

●Recommended operating conditions (Ta=25℃)

Parameter	Symbol	Limits	Unit
Power supply voltage	Vcc	6~11* ²	v
*2 4 - 11 V when regulator no	tused		

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
(Driver)	<u> </u>					
Quiescent current	la	2.5	5.0	7.5	mA	No load
nput offset voltage	Voi	-5	0	5	mV	
Output offset voltage	Voo	-5	0	5	m٧	
Dead zone width	VDB	10	20	30	mν	(Total for positive and negative)
Maximum output amplitude	Von	5.6	6.0	_	V	Differential output
Voltage gain	Gvc	7.0	9.5	11.5	dB	Vin = 500 mV DC, differential output
Positive and negative voltage differential gain	ΔGvc	-0.9	0	0.9	dB	Vin = 500 mV DC, differential output
Ripple rejection	RR	—	80	_	dB	Vin=0.1Vrms, 100Hz
Mute-off voltage	VMOFF	2.0			v	
Mute-on voltage	VMON	_		0.5	V	
(5 V regulator)						
Output voltage	VREG	4.75	5.00	5.25	V	IL=100mA
Output load variation	Δ Vpl	-50	0	10	mV	IL==0~200mA
Input variation	∆ Vvcc	10	0	40	mV	(Vcc 666=6~11V) IL=100mA
Drop voltage	Voif	—	0.3	0.6	V	Vcc =4.7V, IL=200mA * 1
Vreg amplifier output current	INEG	8	20	_	mA	Vcc =4.7V, When 3V is added *2
(Operational amplifier)						
Offset voltage	VOFOP	-5	0	5	mV	
Input bias current	BOP	_	_	300	nA	
High-level output voltage	VOHOP	6.5	7.2	—	V	
Low-level output voltage	VOLOP	_		1.8	V	
Output drive current (sink)	Isink	10	40	—	mA	50Ωat Vcc
Output drive current (source)	ISOURCE	10	40	—	mA	50Ωat GND
Open loop voltage gain	Gvo	-	72	_	dB	Vin=-75dBV, 1kHz
Slew rate	SR	—	1	-	V/uS	

Circuit operation

1. Driver

Inputs to the IC are the focus tracking error signal from the servo preamplifier and the control signal from the motor. The input signals normally center on 2.5V. Polarity is switched when a signal is greater or less than the bias voltage. When polarity is switched, power

transistors Q1 and Q4 or Q2 and Q3 turn on. Power transistor Q1 or Q3, whichever is turned on, is driven by the full wave rectified signal and the level shifted signal, and supplies current to the load. When there is no input, both output pins are at the GND level.

Fig. 2

Rohm

429

BA6299FP

2. Regulator

This is a typical series regulator that generates a reference voltage internally. A PNP low saturation transistor must be connected. 3. Operational amplifier A standard 4558 type.

Application example

Fig. 4

ROHM

Operation notes

- 1. The BA6299FP has an internal thermal shutdown circuit. Output current is muted when the chip temperature exceeds 175°C (typically).
- 2. The output current can be muted when the mute pin (19 pin) voltage is opened or lowered below 0.5V.
- 3. Output is muted when the bias pin (10 pin) voltage drops below 1.4V (typically). Make sure that this pin is at 1.6V or higher under normal operating conditions.
- 4. All four driver output channels are muted during thermal shutdown, muting and a drop in bias pin voltage. No other components are muted.
- Dead zone width is determined as follows : Dead zone width=input resistance×1 μ A For this reason, when using the built-in input resistor (10k Ω), the dead zone becomes 10mV (Typ. single-sided). Because input resistance and 1 μ A

temperature characteristics are canceled, there is virtually no variation due to temperature as long as the internal input resistor is used. However, a dead zone like that defined by the above equation occurs when an external resistor is used to change gain. Temperature change is typically –4600ppm per degree, and gain change is typically 4600ppm per degree.

- Be sure to connect the IC to a 0.1 μ F bypass capacitor to the power supply, at the base of the IC.
- 7. Because of the gain adjustment pin's high gain, connecting a long wire to it may result in output oscillation due to free capacitance. Use caution when designing wires.
- 8. The capacitor between regulator output (24 pin) and GND also serves to prevent oscillation of the IC, so select one with good temperature characteristics.

ROHM

BA6299FP

Optical Disc ICs

channels

Drivers (4

431

BA6299FP

ROHM