Low-current audio headphone driver BA3575FS

The BA3575FS is a headphone driver with an AVC circuit that keeps the output below a fixed level. It features low current consumption, and low output noise, and is ideal for use in portable digital audio equipment.

Applications
 Portable CD players

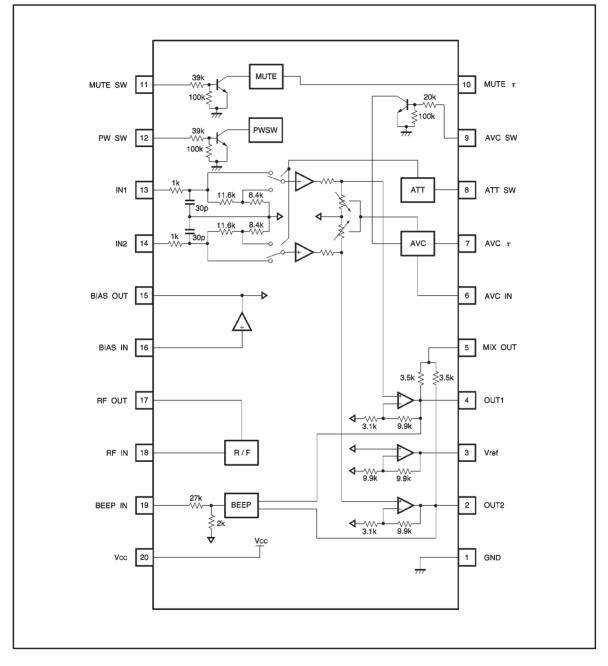
Features

- Low current consumption (when Vcc = 2.4 V, the quiescent current is 4.9mA).
- 2) Suitable for use in digital audio equipment (voltage gain: $G_V = 11.8$ dB, output noise voltage: $V_{NO} = -102$ dBm typ.).
- 3) ATT circuit (gain switch).
- 4) AVC (Auto Volume Control) circuit, for output limiting.

- 5) Internal standby switch.
- 6) Internal mute switch.
- 7) Internal ripple filter.
- 8) No output coupling capacitor required.
- 9) Internal beep circuit.
- 10) SSOP-A20 package.

Parameter	Symbol	Limits	Unit
Power supply voltage	Vcc	9.0	V
Power dissipation	Pd	600 ^{*1}	mV
Operating temperature	Topr	-25~+75	ĉ
Storage temperature	Tstg	-55~+125	ĉ

*1 Reduced by 6.0mW for each increase in Ta of 1°C over 25°C.


• Absolute maximum ratings (Ta = 25° C)

• Recommended operating conditions (Ta = 25° C)

Parameter	Symbol	Min	Max	Unit
Power supply voltage*2	Vcc	1.7	3.6	V

*2 When Vcc \geq 3.6V, do not exceed the maximum allowable output power.

Block diagram

BA3575FS

Pin descriptions

Pin No.	Pin name	1/0	DC voltage (V)	Equivalent circuit	Function
1	GND	I	0		Ground (SUB pin)
2	OUT2	0	1.23		Power amplifier output Beep amplifier output (ch2)
3	Vref	0	1.23	4 3.308k 777 200 ₹ 9.9k 9.9k 9.9k 9.9k 9.9k 177 200 ₹ 177 200 ₹	Center amplifier output
4	OUT1	0	1.23		Power amplifier output Beep amplifier output (ch1)
5	MIX OUT	ο	1.23	₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩	Power amplifier MIX output
19	BEEP IN	I	1.23		Beep amplifier input

Pin No.	Pin name	1/0	DC voltage	Equivalent circuit	Function
6	AVC IN	I	1.23		AVC detector input
9	AVC SW	I	0 (OPEN)	20k ₹20k ₹20k ₹100k	AVC ON/OFF switch
7	AVC τ	1/0	When detecting 0.7 Not detecting 0		AVC detector output smoothing
8	ATT SW	I	_		Gain switch

Pin No.	Pin name	1/0	$\begin{array}{c} \text{DC voltage} \\ (\text{V}) \end{array}$	Equivalent circuit	Function
10	MUTE τ	1/0	MUTE ON 0.1 MUTE OFF 0.7	TTT RF OUT RF OUT RF OUT TTT RF OUT RF OUT RF OUT RF OUT RF OUT RF OUT RF OUT RF OUT RF OUT	Mute switch time constant
11	MUTE SW	I	0 (OPEN)	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} $ $ \begin{array}{c} \end{array} $ $ \end{array} $ $ \begin{array}{c} \end{array} $ $ \begin{array}{c} \end{array} $ $ \end{array} $ $ \end{array} $ $ \begin{array}{c} \end{array} $ $ \end{array} $ $ \end{array} $	Mute ON/OFF switch
12	PW SW	I	0 (OPEN)	12 75k 75k 75k 75k 75k 75k 75k 75k	Power ON/OFF switch
13	IN1	I	1.23		Preamplifier input (ch2)
14	IN2	I	1.23		Preamplifier input (ch1)

Pin No.	Pin name	1/0	DC voltage	Equivalent circuit	Function
15	BIAS OUT	ο	1.23	Vcc vcc vcc vcc vcc vcc vcc vcc vcc vcc	Bias amplifier output
16	BIAS IN	I	1.23	Vcc 300 Vcc 10k 9.8k 300 777	Bias amplifier input
17	RF OUT	0	2.15	RF OUT	Ripple filter amplifier output
18	RF IN	I	0.6		Ripple filter amplifier input
20	Vcc	I	2.4	20 > ∨cc	Power supply input

ROHM

• Electrical characteristics (unless otherwis noted, Ta = 25°C, V _{cc} = 2.4V, R _L = 16 Ω , f = 1kHz, DIN AUDIO,
PWSW = ON, MUTE = OFF, ATT = OFF, and AVC = OFF)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Coniditions
Circuit current 1	lcc1	_	0.2	3.0	μA	VIN=0, RL=OPEN, PWSW=OFF, AVCSW=OPEN
Circuit current 2	lcc2	-	3.1	4.7	mA	V _{IN} =0, R∟=OPEN, MUTE=ON, AVCSW=OPEN
Circuit current 3	lcc3	-	4.9	7.5	mA	VIN=0, RL=OPEN, AVCSW=OPEN
Operating circuit current	Іім	_	17.0	26.0	mA	Pour=0.5mW, RL=16Ω
Voltage gain 1	Gv1	9.8	11.8	13.8	dB	
Voltage gain 2	Gv2	2.3	4.3	6.3	dB	ATT=ON
Rated output power 1	Pout1	19	40	-	mW	THD=10%
Rated output power 2	Pout2	8	15	-	mW	THD=10%, Vcc=1.8V
Total harmonic distortion	THD	-	0.1	0.5	%	Vo=0.3Vms
Output noise voltage	VNO	_	-102	-97	dBm	IHF-A, Rg=0
Input resistance	RiN	14.5	21.0	27.5	kΩ	
Ripple rejection 1	RR1	73	79	-	dB	f _{RR} =100Hz, V _{RR} =-20dBm, Rg=0
Ripple rejection 2	RR2	66	79	_	dB	Rg=0, V _{RR} =-20dBm, Vcc=1.8V f _{RR} =100Hz
AVC level	VAVC	-42.5	-40.5	-38.5	dBV	VIN=-30dBV
Channel separation	CS	24	44	-	dB	Vo=-10dBV
Mute level	ML	80	90	_	dB	VIN=-20dBV
Beep output voltage	VBEEP	1.1	3.0	5.8	mVrms	VBEEP IN=0dBV
Power ON voltage	VPW ON	-	0.95	1.4	v	
Power ON pin current	IPW SW	-	105	150	μA	VPW SW=3.0V
Mute ON voltage	VMUTE ON	-	0.95	1.4	V	
Mute pin current	Імите	-	105	150	μA	VMUTE=3.0V
AVC OFF voltage	VAVC OFF	_	0.85	1.3	V	
AVC pin current	AVC OFF	-	85	130	μA	VAVC=3.0V

ONot desiged for radiation resistance.

Measurement circuit

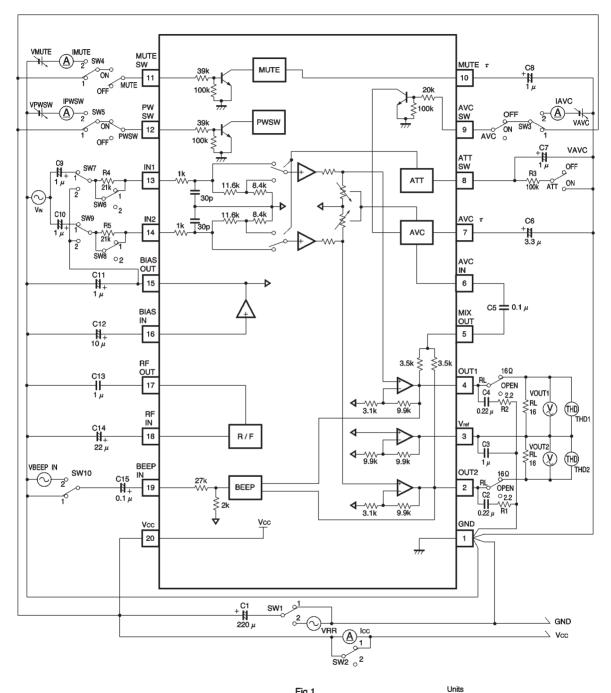
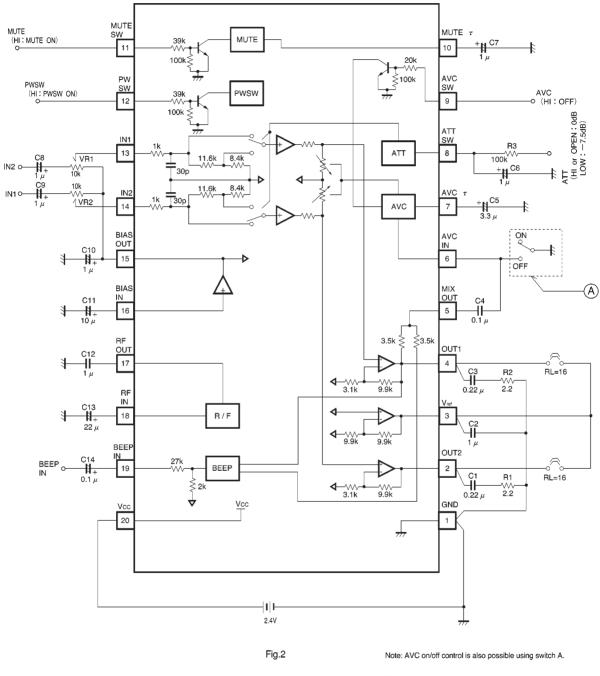


Fig.1


:Ω (±1%) :F (±1%) Resistance Capacitance (film) Capacitance (electrolytic): F (±5%)

Measurement circuit switch table (Fig.1)

Parameter	Symbol	MUTE	PwSw	ATT	AVC	RL	SW1	SW2	SW3	SW4	SW5	SW6	SW7	SW8	SW9	SW10
Circuit current 1	lcc1	OFF	OFF	OFF	ON	OPEN	1	2	1	1	1	1	2	1	2	1
Circuit current 2	lcc2	ON	ON	Ļ	Ļ	Ļ	Ļ	Ļ	Ļ	Ļ	Ļ	ţ	Ļ	Ļ	Ļ	Ļ
Circuit current 3	Icc3	OFF	ţ	Ļ	Ļ	Ļ	ţ	Ļ	Ļ	ţ	ţ	ţ	Ļ	Ļ	Ļ	Ļ
Operating circuit current	lin	Ļ	Ļ	Ļ	OFF	16Ω	ţ	Ļ	Ļ	Ļ	Ļ	ţ	1	Ļ	1	<u></u>
Voltage gain 1	Gv1	Ļ	Ļ	Ļ	Ļ	Ļ	Ļ	1	Ļ	Ļ	Ļ	Ļ	Ļ	Ļ	Ļ	Ļ
Voltage gain 2	Gv2	Ļ	Ļ	ON	Ļ	Ļ	ţ	Ļ	Ļ	Ļ	ţ	ţ	Ļ	Ļ	Ļ	ţ
Rated output power 1	Ρουτ1	Ļ	Ļ	OFF	Ļ	Ļ	ţ	Ļ	Ļ	Ļ	ţ	ţ	Ļ	Ļ	Ļ	Ļ
Rated output power 2	Ρουτ2	Ļ	Ļ	Ļ	Ļ	Ļ	ţ	Ļ	Ļ	Ļ	Ļ	ţ	Ļ	Ļ	Ļ	Ļ
Total harmonic distortion	THD	Ļ	Ļ	Ļ	Ļ	Ļ	ţ	Ļ	Ļ	Ļ	Ļ	ţ	Ļ	Ļ	Ļ	Ļ
Output noise voltage	VNO	Ļ	Ļ	Ļ	Ļ	Ļ	Ļ	Ļ	Ļ	Ļ	Ļ	ţ	2	Ļ	2	Ļ
Input resistance	Rın	Ļ	Ļ	Ļ	Ļ	Ļ	ţ	Ļ	Ļ	Ļ	ţ	2	1	2	1	Ļ
Ripple rejection 1	RR1	Ļ	Ļ	Ļ	Ļ	Ļ	2	Ļ	Ļ	Ţ	ţ	1	2	1	2	↓ I
Ripple rejection 2	RR2	Ļ	Ļ	Ļ	Ļ	Ļ	ţ	Ļ	Ļ	Ļ	ţ	ţ	Ļ	Ļ	Ļ	Ļ
AVC level	VAVC	Ļ	ţ	Ļ	ON	Ļ	1	Ļ	Ļ	ţ	ţ	ţ	1	Ļ	1	Ļ
Channel separation	CS	ţ	Ļ	Ļ	OFF	ţ	ţ	ţ	Ļ	ţ	ţ	ţ	1 2	Ļ	2 1	t
Mute level	ML	ON	Ļ	Ļ	Ļ	Ļ	ţ	Ļ	Ļ	Ļ	Ļ	ţ	1	Ļ	1	2
Beep output voltage	VBEEP	Ļ	Ļ	Ļ	Ļ	Ļ	ţ	Ļ	Ļ	Ļ	ţ	ţ	2	Ļ	2	1
Power ON voltage	VPW ON	OFF	Ļ	Ļ	Ļ	Ļ	ţ	Ļ	Ļ	ţ	2	ţ	1	Ļ	1	Ļ
Power ON pin current	IPW SW	Ļ	Ļ	Ļ	Ļ	Ļ	Ļ	ţ	Ļ	Ļ	Ļ	ţ	2	Ļ	2	ţ
Mute ON voltage	VMUTE ON	ON	ţ	Ļ	Ļ	Ļ	ţ	Ļ	Ļ	2	1	ţ	Ļ	Ļ	Ļ	2
Mute pin current	Ιμυτε	Ļ	Ļ	Ļ	Ļ	Ļ	ţ	Ļ	Ļ	Ļ	ţ	ţ	Ļ	Ļ	Ļ	1
AVC OFF voltage	VAVC OFF	OFF	Ļ	Ļ	Ļ	ţ	ţ	Ļ	2	1	ţ	ţ	1	Ļ	1	ţ
AVC pin current	I AVC OFF	Ļ	Ļ	Ļ	Ļ	ţ	Ļ	Ļ	Ļ	ţ	ţ	ţ	2	Ļ	2	Ļ

Application example

Units		
Resistance :	Ω	(± 5%)
Capacitance (film)	F	(±10%)
Capacitance (electrolytic):	F	(±20%)

Application notes

(1) "Pop" sound

By operating the BA3575FS according to the timing chart shown in Fig.3, it is possible to suppress generation of "pop" noise in the headphone output.

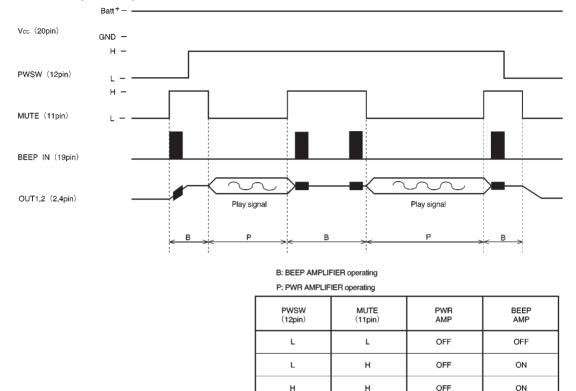


Fig.3 Time chart

н

L

(2) Application circuits

Provided the recommended circuit constants are used, the application circuits should function correctly. However, we recommend that you confirm the characteristics of the circuits in actual use. If you change the circuit constants, check both the static and transient characteristics of the circuit, and allow sufficient margin to accommodate variations between both ICs and external components.

In particular, the capacitors connected to the OUT 1, OUT 2, and V_{REF} pins must have low impedance at high frequency, and have sufficient margin in their temperature characteristics.

Also, use an electrolytic or tantalum capacitor for the capacitor connected to the BIASOUT terminal.

(3) The PCB pattern for the external components should be designed carefully to prevent oscillation and degradation of the circuit characteristics. Keep the wiring tracks as short as possible, and ensure that there is no impedance between the common connections.

ON

OFF

The ripple filter pins (1 and 2) and the bias amplifier pins (3 and 4) cannot be used for external power supplies or reference voltages.

(4) Recommended operating conditions

The curves in Fig.4 below show the maximum allowable power output ($P_{O(Max)}/ch$) plotted against the supply voltage (Vcc) for different values of ambient temperature (Ta). When Vcc \geq 3.6 V, operate the IC in the region below the dotted line, and do not exceed it.

If the maximum allowable power output for each channel $(P_{O(Max)}/ch)$ is exceeded, the internal power consumption will exceed the power dissipation capacity of the package, and destroy the IC.

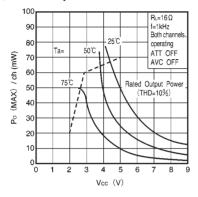
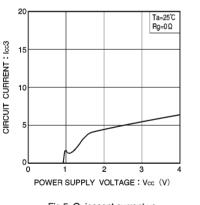



Fig.4 Maximum allowable power output per channel $(P_{0} (MAX.) / ch)$ vs. supply voltage (V_{cc})

Electrical characteristics curves

Fig.5 Quiescent current vs. power supply voltage

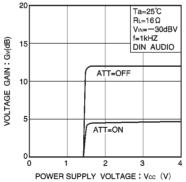


Fig.6 Voltage gain vs. power supply voltage

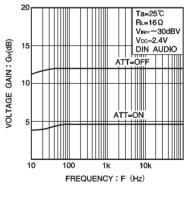
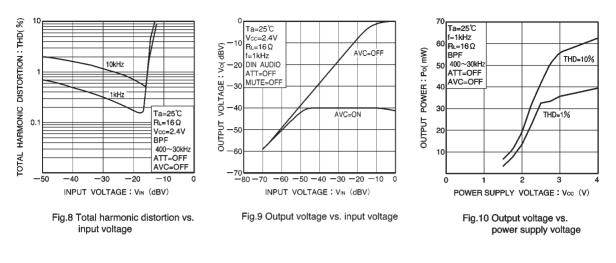




Fig.7 Voltage gain vs. frequency

External dimensions (Units: mm)

