3V dual pre / power amplifier BA3513AFS

The BA3513AFS is a dual, pre/power amplifier designed for headphone stereo applications. It has all of the basic signal circuits required for tape players, and operates off a 3V supply.

The auto-reverse-compatible preamplifier block and fixed-gain power amplifier blocks are independent to facilitate noise reduction.

The preamplifier block can be direct-coupled, and the power amplifiers do not require bootstrap capacitors, and use a fixed-gain negative feedback circuit to reduce the number of external components required and allow compact and reliable set designs.

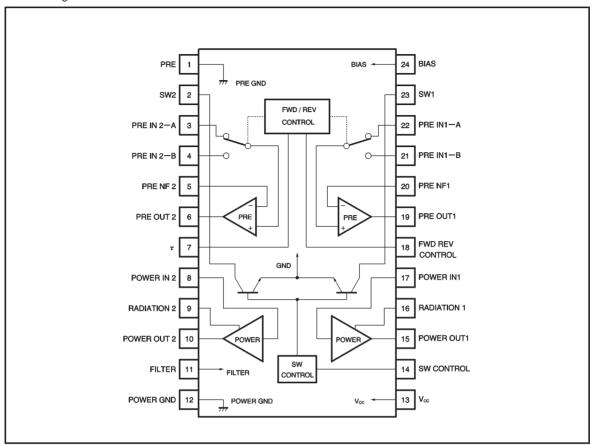
Applications

3V headphone stereos and 3V radio cassette players.

Features

- 1) Dual preamplifiers and power amplifiers on one chip.
- 2) Preamplifier suitable for auto-reverse use.
- 3) Transistor switch provided for metal-tape muting.
- 4) Power amplifier gain is optimized for noise reduction.
- 5) Radiation prevention pin provided.

•Absolute maximum ratings (Ta = 25° C)


Parameter	Symbol	Limits	Unit
Power supply voltage	Vcc	4.5	٧
Power dissipation	Pd	800*	mW
Operating temperature	Topr	−25 ~ + 75	°C
Storage temperature	Tstg	−55∼+125	°C

^{*} When mounted on a 90mm x 50mm x 1.6mm glass epoxy board, reduced by 8.0mW for each increase in Ta of 1°C over 25°C

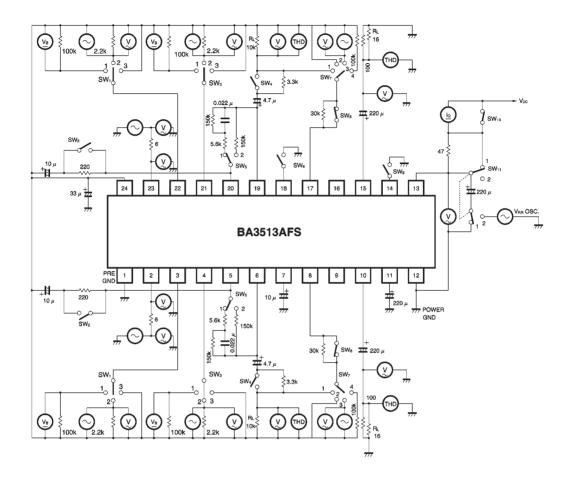
• Recommended operating conditions (Ta = 25°C)

Parameter	Symbol	Min.	Тур.	Max.	Unit
Power supply voltage	Vcc	1.8	2.4	3.6	٧

Block diagram

●Electrical characteristics (unless otherwise noted, Ta = 25°C, Vcc = 2.4V and f = 1kHz)

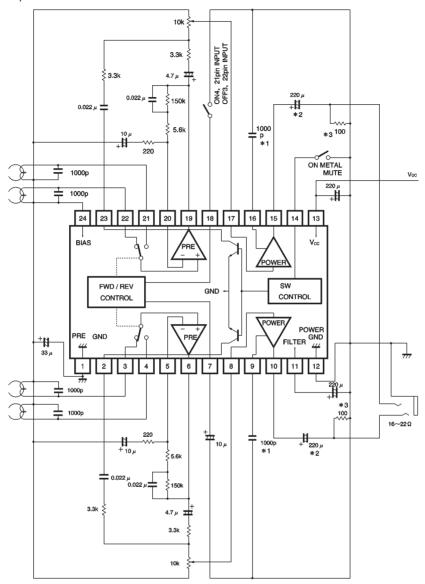
Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions		
Quiescent current	lα	_	8	14	mA	V _{IN} =0V _{rms} , 14, 18pin Open		
$\langle Preamplifier \rangle R_L = 10k\Omega$								
Open loop voltage gain	Gvo	72	78	_	dB	Vo=-10dBm		
Maximum output voltage	Vом	200	300	_	mV _{rms}	THD=1%		
Total harmonic distortion	THD₁	_	0.03	0.15	%	Vo=0.2V _{rms} , NAB33dB		
Input conversion noise voltage	Vnin	_	1.0	1.8	μ Vrms	R _g =2.2kΩ, BPF20~20kHz		
Ripple rejection ratio	RR ₁	40	47	_	dB	V_{RR} =-20dBm, f=100Hz NAB33dB, R_{g} =2.2k Ω		
Forward-reverse crosstalk	CT _{F-R}	65	75.5	_	dB	Single channel Vo=-10dBm R _g =2.2kΩ, BPF20~20kHz		
Input bias current	lв1	_	60	300	nA	V _{IN} =0V _{rms}		
$\langle Power amplifier \rangle R_L = 16k\Omega$								
Rated output	Роит	30	40	_	mW	THD=10%		
Closed loop voltage gain	Gvc	24.7	26.7	28.7	dB	V _{IN} =-40dBm		
Total harmonic distortion	THD ₂	_	0.2	1.0	%	Po=1mW		
Output noise voltage	V _{NO}	_	30	39	μVrms	$R_g=0\Omega$, BPF20~20kHz		
Ripple rejection ratio	RR ₂	45	58	_	dB	V_{RR} =-20dBm, f=100Hz, R_g =0 Ω		
Input resistance	Rin	21.4	30	38.6	kΩ	_		
Input bias current	l _{B2}	_	22	80	nA	$V_{IN}=0V_{rms}, R_g=10k\Omega^{*1}$		
Channel balance	СВ	_	0	0.7	dB	V ₀ =-10dBm		
Switching transistor ON resistance	RTR	_	6.0	18	Ω	14pin GND, 2pin, 23pin		
⟨Preamplifier + power amplifier⟩ (connection as per application example circuit)								
Channel separation	cs	37	47	_	dB	Pre-Rg=2.2kΩ, VR Max.*2 Single channel Power-Vo=-5dBm BPF20~20kHz		
Leakage from preamp to power amp for signal leak VR Min.	SL	_	-63	-57	dBm	Pre-V ₀ =-12dBm VR Min.* ³ , When both channels are operating		


^{*1} $IB2 = \frac{VB2}{10kO} \times \frac{4}{3}$

V_{B2}: Voltage at each end of Rg (10 Ω).

 $[\]ensuremath{\texttt{*2}}\xspace$ 0dB attenuation from the preamplifier output to power amplifier input.

^{*3} Power amplifier signal source impedance is 0Ω .


Measurement circuit

Units:

Resistance : Ω ($\pm 1\%$) Capacitance (film) : F ($\pm 1\%$) Capacitance (electrolytic): F ($\pm 5\%$)

Application example

Units:

Resistance : Ω (\pm 5%) Capacitance (film) : F (\pm 10%) Capacitance (electrolytic): F (\pm 20%)

- *1 Connect a 1000pF capacitor as a countermeasure against RF noise. Normally not required.
- *2 220 μ F for 16 Ω headphones. 100 μ F for 32 Ω headphones.
- *3 Depending on the headphones, connect a 47 Ω resistor and 0.01 μ F capacitor between pin 10 (pin15) and GND.

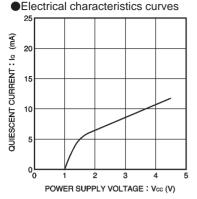


Fig. 1 Quiescent current vs. power supply voltage



Fig. 2 Maximum output power vs. power supply voltage

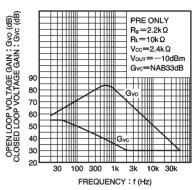


Fig. 3 Voltage gain vs. frequency

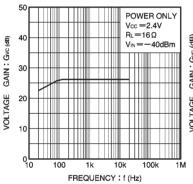


Fig. 4 Voltage gain vs. frequency

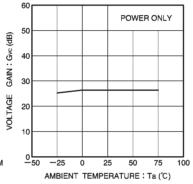


Fig. 5 Voltage gain vs. ambient temperature

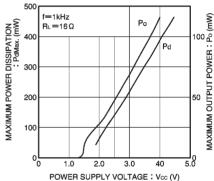
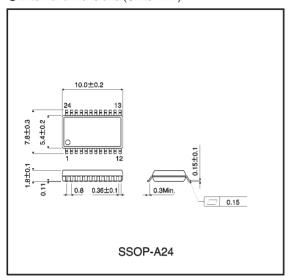



Fig. 6 Maximum power dissipation and output power vs. power supply voltage

●External dimensions (Units: mm)

