TRANSPARENT BUS EXPANDER

PRELIMINARY SPECIFICATION

DESCRIPTION

The Bus Expander is specifically designed to increase the I/O capability of 8X300 systems previously limited by fanout considerations. The bus expander serves as a buffer between the 8X300 and blocks of I/O devices. Each bus expander can buffer a block of 16 I/O ports while only adding a single load to the 8X300.

FEATURES

- 15ns max propagation delay
- Bidirectional
- Three-state outputs on both ports

FUNCTIONAL DESCRIPTION

The Bus Expander contains eight sets of non-inverting bidirectional tri-state drivers for the bus data bits, four non-inverting undirectional drivers for I/O port control, and necessary control logic. The control logic is required to maintain the proper directional transfer of bus data as dictated by the states of the I/O port control signals. A bus expander may be used on either left bank or right bank. Systems may be configured with I/O ports connected directly to the 8X300, as well as I/O ports connected through a bus expander.

Addition of bus expanders may impact system cycle time due to the added delay in the data path. For the purposes of calculating allowable cycle time as described in the 8X300 data sheet, the bus expander delays may be considered additive to the I/O port delays so that a buffered I/O port simply appears as a slower I/O port.

APPLICATIONS

The 8T39 Bus Expander is designed to be used with the 8X300 microprocessor to allow increased I/O capability in those systems previously limited by fanout considerations. Figure 1 shows a typical arrangement of the bus expander in an 8X300 system. Other I/O ports or working storage may be directly connected to the bus as shown.

The bus expander is not limited to use with the 8X300, but may be applied in any system which uses a combined address/data bus.

PIN CONFIGURATION

TRUTH TABLE

ME	SC	WC DATA TRANSFER DIRECTION		ADDRESS COMPARISON		
L	L	L	DI Bus ← DO Bus	No		
L	1 L	н	DI Bus → DO Bus	No		
L	н	X	DI Bus → DO Bus	No		
н) X	X	DI Bus → DO Bus	No		
		1 1				

PIN DESIGNATION

PIN NO.	SYMBOL	NAME & FUNCTION	TYPE	
2-7,9,10	D00-D07	I/O port data bus	Active low, three-state	
11	WC(OUT)	Write command output	Active high	
12	SC(OUT)	Select command output	Active high	
13	MCLK(OUT)	Master clock input	Active high	
14	ME(OUT)	Master enable output	Active low	
15	ME(IN)	Master enable input	Active low	
16	MCLK(IN)	Master clock input	Active high	
17	SC(IN)	Select command output	Active high	
18	WC(IN)	Write command output	Active high	
19,20,22-27	D10-D17	Microprocessor data bus	Active low, three-state	
1,8,21	GND	Ground		
28	Vcc	+5 volt supply		

8T58-I,XL

8T58

PRELIMINARY SPECIFICATION

FUNCTIONAL BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

	PARAMETER	RATING	UNIT	
Vcc	Power supply voltage	+7	Vdc	
Vin	Input voltage	+5.5	Vdc	
Vo	Off-state output voltage	+5.5	Vdc	
TA	Operating temperature range	0 to +70	°C	
TSTG	Storage temperature range	-65 to +150	°C	

NOTE Includes tri-state leakage.

AC ELECTRICAL CHARACTERISTICS $V_{CC} = 5V \pm 5\%$, 0°C $\leq T_A \leq 70$ °C, C_L = 300pF

					LIMITS			
PA	RAMETER	то	FROM	TEST CONDITIONS	Min	Min Typ Max		UNIT
tpd	Path delay Data		DIX DOX				15	ns
tpd	Control	ME(OUT) MCLK(OUT) SC(OUT) WC(OUT)	ME(IN) MCLK(IN) SC(IN) WC(IN)				15	ns
toe	Data Output Enable	DIX DOX	ME(IN) SC(IN) WC(IN)		28		56	ns
tod	Data Output Disable		ME(IN) SC(IN) WC(IN)		15			

8T58-I,XL

8**T**58

TRANSPARENT BUS EXPANDER

PRELIMINARY SPECIFICATION

8T58-I,XL

8T58

-32		TEST CONDITIONS	LIMITS			LINIT
	PARAMETER	TEST CONDITIONS	Min	Тур	Max	
	Input voltage					v
VIL	Low			1	.8	
VIH	High		2.0			
VIC	Clamp	-5mA at V _{CC} min			-1	
	Output voltage	V _{CC} = 4.75V				V
VOL	Low	$I_{OL} = 50 \text{mA}$.55	
Voн	High	I _{OH} = -3.2mA	2.4			
	Input current	V _{CC} = 5.25V				μA
LIL.	Low ¹	$V_{IL} = .5V$		1	-250	
Ын	High1	$V_{IH} = 5.25V$		<10	100	
los	Short circuit output current	V _{CC} = 4.75V	-40			mA
lcc	Supply current	$V_{CC} = 5.25V$			200	mA

VOLTAGE WAVEFORMS

TEST LOAD CIRCUIT

