DIGITAL 8000 SERIES TTL/MSI

DESCRIPTION

The 8T09 is a high speed quad bus driver device for applications requiring up to $\mathbf{2 5}$ loads interconnected on a single bus.
The outputs present a high impedance to the bus when disabled, (control input " 1 ") and active drive when enabled

LOGIC DIAGRAM AND TRUTH TABLE

(control input " 0 "). This eliminates the resistor pull-up requirement while providing performance superior to open collector schemes. Each output can sink 40 mA and drive 300pF loading with guaranteed propagation delay less than 22 nanoseconds.

SCHEMATIC DIAGRAM

ELECTRICAL CHARACTERISTICS (Over Recommended Operating Temperature And Voltage)

CHARACTERISTICS	LImits				TEST CONDITIONS			NOTES
	MIN.	TYP.	MAX.	UNITS	DATA	DISABLE	OUTPUTS	
"1" Output Voltage	2.4	3.0		v	0.8 V	0.8 V	-5.2mA	7
"0" Output Voltage		0.2	0.4	v	2.0 V	0.8 V	40 mA	8
Output Leakage Current	-40		+40	$\mu \mathrm{A}$		2.0 V	0.4V or 2.4 V	3
"1" Input Current			40	$\mu \mathrm{A}$		4.5 V		
" 0 " Input Current			-2.0	mA	0.4 V	0.4 V		
Input Latch Voltage	5.5			\checkmark	10 mA	10 mA		
Power/Current Consumption		236/45	340/65	$\mathrm{mW} / \mathrm{mA}$				11
Output Short Circuit Current	-40		-120	mA	ov	ov	ov	

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

CHARACTERISTICS	LIMITS				TEST CONDITIONS			NOTES
	MIN.	TYP.	MAX.	UNITS	DATA	DISABLE	OUTPUTS	
Propagation Delay								
Data to Output								
$t_{\text {pd }+,} t_{\text {pd- }}$			10	ns			30pF load	9
			20	ns			300pF load	9
Disable to Output								
High Z to 0,0 to High Z			14	ns			30pF load	9
			22	ns			300pF load	9
High \mathbf{Z} to 1, 1 to High Z			14	ns			30pF load	9
			22	ns			300pF load	9

NOTES:

1. All voltage measurements are referenced to the ground
should the isolation diodes become forward biased. terminal. Terminals not specifically referenced are left Measurements apply to each output and the associated data input independently. electrically open. Output source current is supplied through a resistor to ground.
2. Polts.

Output sink current is supplied through a resistor to ${ }^{\mathbf{C C}}$. Positive NAND Logic definition: 9. Refer to $A C$ Test Figures.
"UP" Level = " $1 "$ ", "DOWN" Level $=" 0 "$.
Precautionary measures should be taken to ensure current changes and improvements.
limiting in accordance with Absolute Maximum Ratings
11. $V_{C C}=5.25$ volts.

AC TEST FIGURES AND WAVEFORMS

PROPAGATION DELAY (DATA TO OUTPUT)

INPUT PULSE:
$t_{r}=t_{f}=5 n s(10 \%$ TO 90\%)
FREQ. $=1 \mathrm{MHz}$ (50% DUTY CYCLE)
$A M P .=2.6 \mathrm{~V}$

AC TEST FIGURES AND WAVEFORMS (Cont'd)

PROPAGATION DELAY ("0"" TO HIGH Z)

INPUT PULSE:
$t_{r}=t_{f}=5 \mathrm{~ns}(10 \%$ TO 90\%)
FREQ. $=200 \mathrm{kHz}$
$A M P=2.6 \mathrm{~V}$

FIGURE 2.
PROPAGATION DELAY ("1" TO HIGH Z)

INPUT PULSE:
$t_{r}=t_{f}=5 n s(10 \%$ TO 90\%)
FREQ. $=200 \mathrm{kHz}$
AMP $=2.6 \mathrm{~V}$

FIGURE 3

TYPICAL APPLICATION

The above figure illustrates usage of the 8 T 09 in data processing logic. For example, FF_{1} thru FF_{n} may represent bit X in each of several functions in a minicomputer (accumulators, MQ register, index registers, indirect address
registers, etc.). Transfer from any source to any load, including transfers from one register to another, can take place along the single path labeled "BUS".

