

8425 DUAL RS/T BINARY

The 8425 is a low-power, capacitively coupled Dual RS/T AC Binary.

This element responds to the trailing or negativegoing transition of the clock pulse and features a common-clock, common RESET ($\overline{\mathrm{R}}_{\mathrm{D}}$) and separate $\operatorname{SET}\left(\bar{S}_{\mathrm{D}}\right)$ which provide maximum usage of all inputs in synchronous systems such as shift registers and synchronous counters. The asynchronous RESET inputs, $\overline{\mathrm{R}}_{\mathrm{D}} / \overline{\mathrm{S}}_{\mathrm{D}}$, may be activated independent of the state of the clock, thus providing random access to synchronous systems. The synchronous inputs ($\overline{\mathrm{R}}_{\mathrm{C}}$
and $\overline{\mathrm{S}}_{\mathrm{C}}$) are especially adaptable to NAND logic systems since they respond to low levels. The $\overline{\mathrm{R}}_{\mathrm{C}}$ and $\overline{\mathrm{S}}_{\mathrm{C}}$ inputs have no effect when the clock line is stationary.

Each logic element in the 8000 series is characterized to provide guarantees for driving the 8425. A convenient summary of these AC loading rules is provided in Table 1-5, Section 1.

Usage rules and applications information are included in Section 4 of this handbook.

ELECTRICAL CHARACTERISTICS (NOTES: 1, 2, 3, 4, 5, 6, 15)

ACCEPTANCE	CHARACTERISTIC	LIMITS			TEST CONDITIONS									
SUB-GROUP		MIN.	MAX.	UNITS	$\begin{aligned} & \text { TEMP. } \\ & \text { S8425 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { TEMP. } \\ & \text { N8425 } \\ & \hline \end{aligned}$	V_{cc}	$\bar{S}_{\text {D }}$	$\overline{\mathrm{R}}_{\mathrm{D}}$	CLOCK	$\overline{\mathrm{R}}_{\mathrm{C}}$	\bar{S}_{C}	OUTPUTS	NOTES
$\begin{aligned} & \text { A }-5 \\ & \text { A }-3 \\ & \text { A }-4 \end{aligned}$	$\begin{array}{ll}\text { " } 1 \text { " OUTPUT VOLTAGE } & \text { (Q) } \\ & \text { (Q) } \\ & \text { (Q) }\end{array}$	$\begin{aligned} & 3.4 \\ & 3.6 \\ & 3.4 \end{aligned}$		$\begin{aligned} & v \\ & v \\ & v \end{aligned}$	$-55^{\circ} \mathrm{C}$ $+25^{\circ} \mathrm{C}$ $+125^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ $+25^{\circ} \mathrm{C}$ $+75^{\circ} \mathrm{C}$	4.75 V 5.0 V 4.75 V	0.7 V 0.7 V 0.7 V	2.0 V 2.0 V 2.0 V				$\begin{aligned} & -225 \mu \mathrm{~A} \\ & -225 \mu \mathrm{~A} \\ & -225 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & 8 \\ & 8 \\ & 8 \end{aligned}$
A -5 A -3 A -4	"1" OUTPUT VOLTAGE	3.4 3.6 3.4		v v v	$-55^{\circ} \mathrm{C}$ $+25^{\circ} \mathrm{C}$ $+125^{\circ} \mathrm{C}$	+ $+25^{\circ} \mathrm{C}$ $+75^{\circ} \mathrm{C}$	4.75 V 5.0 V 4.75 V	2.0 V 2.0 V 2.0 V	0.7 V 0.7 V 0.7 V				$-225 \mu \mathrm{~A}$ -225μ -225μ	$\begin{aligned} & 8 \\ & 8 \\ & 8 \end{aligned}$
A-5 A-3 A-4	"0" OUTPUT VOLTAGE		0.35 0.35 0.35	v v v	$-55^{\circ} \mathrm{C}$ $+25^{\circ} \mathrm{C}$ $+125^{\circ} \mathrm{C}$	+ $+25^{\circ} \mathrm{C}$ $+25^{\circ} \mathrm{C}$	4.75 V 5.0 V 4.75 V	2.0 V 2.0 V 2.0 V	0.7 V 0.7 V 0.7 V				7.2 mA 7.2 mA 7.2 mA	9 9 9
$\begin{aligned} & A-5 \\ & A-3 \\ & A-4 \end{aligned}$	"0" OUTPUT VOLTAGE		$\begin{aligned} & 0.35 \\ & 0.35 \\ & 0.35 \end{aligned}$	V V v	$-55^{\circ} \mathrm{C}$ $+25^{\circ} \mathrm{C}$ $+125^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ $+25^{\circ} \mathrm{C}$ $+75^{\circ} \mathrm{C}$	$\begin{aligned} & 4.75 \mathrm{~V} \\ & 5.0 \mathrm{~V} \\ & 4.75 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0.7 \mathrm{~V} \\ & 0.7 \mathrm{~V} \\ & 0.7 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 2.0 \mathrm{~V} \\ & 2.0 \mathrm{~V} \\ & 2.0 \mathrm{~V} \end{aligned}$				7.2 mA 7.2 mA 7.2 mA	$\begin{aligned} & 9 \\ & 9 \\ & 9 \end{aligned}$
C-1 A -3 $\mathrm{C}-1$	"0" INPUT CURRENT	-0.1 -0.1 -0.1	-1.6 -1.6 -1.6	mA mA mA	$-55^{\circ} \mathrm{C}$ $+25^{\circ} \mathrm{C}$ $+125^{\circ} \mathrm{C}$	+ $+25^{\circ} \mathrm{C}$ $+25^{\circ} \mathrm{C}$	5.25 V 5.25 V 5.25 V		0.35 V 0.35 V 0.35 V					12 12 12
$\begin{aligned} & \mathrm{C}-1 \\ & \mathrm{~A}-3 \\ & \mathrm{C}-1 \end{aligned}$	" 0 " INPUT CURRENT $\left.\begin{array}{l} \left(\overline{\mathrm{S}}_{\mathrm{D}} \mathrm{D}\right) \\ \left(\mathrm{S}_{\mathrm{S}}^{\mathrm{S}}\right) \\ \left(\mathrm{S}_{\mathrm{D}}\right) \end{array}\right)$	$\begin{aligned} & -0.1 \\ & -0.1 \\ & -0.1 \end{aligned}$	-0.8 -0.8 -0.8	mA mA mA	$-55^{\circ} \mathrm{C}$ $+25^{\circ} \mathrm{C}$ $+125^{\circ} \mathrm{C}$	$\begin{array}{r} 0^{\circ} \mathrm{C} \\ +25^{\circ} \mathrm{C} \\ +75^{\circ} \mathrm{C} \end{array}$	$\begin{aligned} & 5.25 \mathrm{~V} \\ & 5.25 \mathrm{~V} \\ & 5.25 \end{aligned}$	$\begin{aligned} & 0.35 \mathrm{~V} \\ & 0.35 \mathrm{~V} \\ & 0.35 \mathrm{~V} \end{aligned}$						12 12 12
$\begin{aligned} & C-1 \\ & \text { A }-3 \\ & C-1 \end{aligned}$	" 0 " INPUT CURRENT	$\begin{aligned} & -0.1 \\ & -0.1 \\ & -0.1 \end{aligned}$	-0.6 -0.6 -0.6	mA mA mA	$-55^{\circ} \mathrm{C}$ $+25^{\circ} \mathrm{C}$ $+125^{\circ} \mathrm{C}$	$\begin{array}{r} 0^{\circ} \mathrm{C} \\ +25^{\circ} \mathrm{C} \\ +75^{\circ} \mathrm{C} \end{array}$	$\begin{aligned} & 5.25 \mathrm{~V} \\ & 5.25 \mathrm{~V} \\ & 5.25 \mathrm{~V} \end{aligned}$				$\begin{aligned} & 0.35 \mathrm{~V} \\ & 0.35 \mathrm{~V} \\ & 0.35 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0.35 \mathrm{~V} \\ & 0.35 \mathrm{~V} \\ & 0.35 \mathrm{~V} \end{aligned}$		
A -4	"0" INPUT CURRENT (CLOCK)		-50	$\mu \mathrm{A}$	$+125^{\circ} \mathrm{C}$	$+75^{\circ} \mathrm{C}$	5.25 V			OV				
$\begin{aligned} & \text { A }-4 \\ & \text { A }-3 \\ & \text { A-4 } \\ & \text { A }-3 \end{aligned}$	" 1 " INPUT CURRENT		$\begin{aligned} & 25 \\ & 25 \\ & 50 \\ & 50 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$	$+125^{\circ} \mathrm{C}$ $+25^{\circ} \mathrm{C}$ $+125^{\circ} \mathrm{C}$ $+25^{\circ} \mathrm{C}$	$\begin{aligned} & +75^{\circ} \mathrm{C} \\ & +25^{\circ} \mathrm{C} \\ & +75^{\circ} \mathrm{C} \\ & +25^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 4.75 \mathrm{~V} \\ & 4.75 \mathrm{~V} \\ & 4.75 \mathrm{~V} \\ & 4.75 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 4.5 \mathrm{~V} \\ & 4.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 4.5 \mathrm{~V} \\ & 4.5 \mathrm{~V} \end{aligned}$					$\begin{aligned} & 13 \\ & 13 \\ & 13 \\ & 13 \end{aligned}$
A -6	CLOCKED MODE HOLDING TEST		10	ns	$+25^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	5.0 V			PULSE				15
$\begin{aligned} & \text { A-6 } \\ & \text { A-6 } \end{aligned}$	CLOCKED MODE SWIT CHING TEST		$\begin{aligned} & 50 \\ & 75 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	$\begin{aligned} & +25^{\circ} \mathrm{C} \\ & +25^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & +25^{\circ} \mathrm{C} \\ & +25^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 5.0 \mathrm{~V} \\ & 5.0 \mathrm{~V} \end{aligned}$			$\begin{aligned} & \text { PULSE } \\ & \text { PULSE } \end{aligned}$				$\begin{aligned} & 15 \\ & 15 \end{aligned}$
A-6	CLOCKED MODE TURN-ON DELAY		60	ns	$+25^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	5.0 V						D.C.F.O. $=9$	10,15
A-6	CLOCKED MODE TURN-OFF DELAY		60	ns	$+25^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	5.0 V						D.C.F.O. $=9$	10,15
A-6	TOGGLE RATE	8		M Hz	$+25^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	5.0 V				$\overline{\mathbf{Q}}$	Q		15
C-2	OUTPUT FALL TIME		75	ns	$-55^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$	4.75 V						A.C.F.O. $=2$	11,15
$\mathrm{C}-2$ $\mathrm{C}-2$ $\mathrm{C}-2$ $\mathrm{C}-2$	input capactrance		$\begin{array}{r} 100 \\ 3.0 \\ 6.0 \\ 3.0 \end{array}$	$\begin{aligned} & \mathrm{pf} \\ & \mathrm{pf} \\ & \mathrm{pf} \\ & \mathrm{pf} \end{aligned}$	$\begin{aligned} & +25^{\circ} \mathrm{C} \\ & +25^{\circ} \mathrm{C} \\ & +25^{\circ} \mathrm{C} \\ & +25^{\circ} \mathrm{C} \end{aligned}$	$\begin{gathered} +25^{\circ} \mathrm{C} \\ +25^{\circ} \mathrm{C} \\ +25^{\circ} \mathrm{C} \\ +25^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & 5.0 \mathrm{~V} \\ & 5.0 \mathrm{~V} \\ & 5.0 \mathrm{~V} \\ & 5.0 \mathrm{~V} \end{aligned}$	2.0 V		7 7 7 7				
A-2	POWER CONSUMPTION (Per Binary)		24.7	mW	$+25^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	5.25 V				\bar{Q}	Q		
$\begin{aligned} & \mathrm{A}-2 \\ & \mathrm{~A}-2 \\ & \mathrm{~A}-2 \end{aligned}$	input voltage rating	$\begin{aligned} & 5.0 \\ & 5.5 \\ & 5.5 \end{aligned}$	6.0	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$	$\begin{aligned} & +25^{\circ} \mathrm{C} \\ & +25^{\circ} \mathrm{C} \\ & +25^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & +25^{\circ} \mathrm{C} \\ & +25^{\circ} \mathrm{C} \\ & +25^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 5.0 \mathrm{~V} \\ & 5.0 \mathrm{~V} \\ & 5.0 \mathrm{~V} \end{aligned}$	$50 \sim \mathrm{~A}$	$50 \mu \mathrm{~A}$	$10 \mu \mathrm{~A}$ 0 V	$\begin{gathered} 0 \mathrm{~V} \\ 10 \mu \mathrm{~A} \end{gathered}$	$\begin{gathered} 0 \mathrm{~V} \\ 10 \mu \mathrm{~A} \end{gathered}$		13
A-2 A-2	OUTPUT SHORT CIRCUIT CURRENT (\%)	$\begin{aligned} & -5.0 \\ & -5.0 \end{aligned}$	$\begin{aligned} & -12 \\ & -12 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$	$\begin{aligned} & +25^{\circ} \mathrm{C} \\ & +25^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	$\begin{aligned} & +25^{\circ} \mathrm{C} \\ & +25^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 5.0 \mathrm{~V} \\ & 5.0 \mathrm{~V} \\ & \hline \end{aligned}$	0 V	OV				$\begin{aligned} & \text { 0V } \\ & \text { ov } \end{aligned}$	

Notes:

1. All voltage and capacitance measurements are referenced to the ground terminal. Terminals not specifically referenced are left electrically open.
All measurements are taken with ground pin tied to zero volts.
2. All mieasurements are taken with ground pin tied to zero volts.
3. Positive NAND Logic definition: "UP" Level = " 1 ", "DOWN" Level = "0".
. Precautionary measures should be taken to ensure current limiting in accordance with Absolute $\mathrm{M}_{\perp} \times$ ximum Ratings should the isolation diodes become forward biased
4. Measurement, acply to each gate element independently.

- Capacitance as measured on Boonton Electronic Corporation Model 75A-S8 Capacitance Bridge or equivalent. $f=1 \mathrm{MHz}, \mathrm{Vac}_{\mathrm{ac}}=25 \mathrm{mV}$ rms. All pins not specifically referenced are tied to guard for capacitance tests. Output pins are left open.

8. Output source current is supplied through a resistor to ground.
9. Output source current is supplied through a resistor to ground
10. Output sink current is supplied through a resistor to V_{cc}.
11. Output sink current is supplied through a resistor to V_{cc}
12. One DC fan-out is defined as 0.8 mA .
13. One DC fan-out is defined as 0.8 mA
14. One AC fan-out is defined as 50 pf .
15. Apply 0.5 V to the Q output terminal for \bar{R}_{D} test and 0.5 V to \bar{Q} for \bar{S}_{D} test
16. Apply $V_{c c}$ to \bar{Q} output terminal and zero volts to Q output terminal for \bar{R}_{D} test and $V_{c . c}$ to Q and zero volts to \bar{Q} for \bar{S}_{D} test.
17. Manufacturer reserves the right to make design and process changes and improvements.
18. Detailed test conditions for AC testing are in Section 3.

BASIC CIRCUIT SCHEMATIC

