DESCRIPTION

The 82S90 Decade Counter and 82S91 Binary Counter are very high speed versions of the popular 8290 Decade and 8291 Binary Counters. They are multifunctional MSI building blocks capable of being used in counting frequency synthesis, digital integration where high speed is essential.

FEATURES

- 100 MHz TYPICAL COUNT FREQUENCY
- HIGH IMPEDANCE PNP INPUTS
- VARIABLE MODULUS, $\div 2,4,5,8,10$, and 16
- STROBED PARALLEL ENTRY
- PIN REPLACEABLE for the 8290/8291, 74196/74197

LOGIC SYMBOL

PIN DESIGNATIONS

CP_{1}	Clock input to counter first stage (active low going edge)
CP_{2}	Clock input to counter last three stages (active low going edge)
DS	Data Strobe Input for enabling data entry
RS	Reset Input for resetting all stages and outputs to zero
$D_{A}, D_{B}, D_{C}, D_{D}$	Data Inputs
AO, BO, CO, DO	Data Outputs

LOGIC DIAGRAMS

D.C. ELECTRICAL CHARACTERISTICS (Over Recommended Operating Temperature And Voltage)

A.C. ELECTRICAL CHARACTERISTICS $\quad T_{A}=25^{\circ} \mathrm{C}$ and $V_{C C}=5.0 \mathrm{~V}$

CHARACTERISTICS	LIMITS				TEST CONDITIONS						NOTES
	MIN	TYP	MAX	UNITS	DATA STROBE	DATA INPUTS	RESET	$\begin{gathered} \text { CLOCK } \\ 1 \end{gathered}$	$\begin{gathered} \text { CLOCK } \\ 2 \end{gathered}$	OUTPUTS	
Strobe Pulse Width Reset Pulse Width Strobe/Reset Release Time Clock Mode ton Delay Bit A Bits B, C, D Clock Mode toff Delay Bit A Bits B, C, D Strobed Data ton Delay (All Bits) Strobed Data toff Delay (All Bits) Toggle Rate		5		ns					AOUT		9
		7		ns					AOUT		9
		10		ns					AOUT		9
		9	12	ns							9
		10	13	ns							9
		5	8	ns							9
		6	10	ns							9
		15	22	ns							9
		13		ns							
	85		20	$\begin{gathered} \mathrm{ns} \\ \mathrm{MHz} \end{gathered}$							
	85	100		MHz							9

NOTES:

1. All voltage measurements are referenced to the ground termlnal. Terminals not specifically referenced are left electrically open.
2. All measuremente are taken with ground pin tied to zero volts.
3. Positive current flow is defined as into the terminal referenced.
4. Positlve NAND Logic definition:
"UP" Level = "1", "DOWN" Level = "0".
5. Precautionary measures should be taken to ensure current

Ilmiting in accordance with Absolute Maximum Ratings should the isolation diodes become forward blased.
6. Measurements apply to each output and the associated data input Independently.
7. Output source current is supplied through a resistor to ground.
Output sink current is supplied through a resistor to $V_{\text {CC }}$. Refer to AC Test Figures.
10. Manufacturer reserves the right to make design and process changes and improvements.
11. Not more than one output should be shorted at a time.
12. $V_{C C}=5.25 \mathrm{~V}$.

INPUT AND OUTPUT STRUCTURES

AC TEST FIGURES AND WAVEFORMS

AC TEST FIGURES AND WAVEFORMS（Cont＇d）

TOGGLE RATE

82590

82591
 A OUTPUT』にルルルム B OUTPUT c output D OUTPUT

STROBE／RESET RELEASE TIME

NOTES：
All resistor values are in ohms
All capacitance values are in picotarads and include iig and probe capacitance．
All diodes are iNg 16.

FUNCTIONAL DESCRIPTION

1. 82590 Decade Counter

The 82S90 can be used in three basic count modes as follows:
a. BCD Counter. The CP2 input must be connected to the A_{O} output and $C P 1$ receives the count input. The count sequence obtained is BCD in accordance with the truth table.
b. Bi-Quinary Counter. If a symmetrical output is required for divide by 10 operation, the D_{O} output must be connected to the CP1 input and the count input applied to CP2. A symmetrical square wave is then obtained at A_{O} of one-tenth the input frequency present at CP2 in accordance with the truth table.
c. Separate Divide by Two and Five Counters. Because the inherent structure of the counter is that of two separate divide by two and divide by five sections, no other connections are required for this mode of operation. An input presented to CP1 will appear at A_{0} output at half the input frequency. An input presented to CP2 will appear at outputs $\mathrm{B}_{\mathrm{O}}, \mathrm{C}_{\mathrm{O}}$ and D_{O} as a binary divide by five count (i.e., from $0=000$ to $4=100$). Operation of the DS and RS inputs remain common to all four flip flops as with any other count mode.

TRUTH TABLES

Decade (BCD)				
Input	A_{0}	$\mathrm{~B}_{0}$	C_{0}	D_{0}
0	0	0	0	0
1	1	0	0	0
2	0	1	0	0
3	1	1	0	0
4	0	0	1	0
5	1	0	1	0
6	0	1	1	0
7	1	1	1	0
8	0	0	0	1
9	1	0	0	1

Bi-Quinary (5-2)					
Input	A_{0}	$\mathrm{~B}_{0}$	C_{0}	D_{0}	
0	0	0	0	0	
1	0	1	0	0	
2	0	0	1	0	
3	0	1	1	0	
4	0	0	0	1	
5	1	0	0	0	
6	1	1	0	0	
7	1	0	1	0	
8	1	1	1	0	
9	1	0	0	1	

2. $\mathbf{8 2 S 9 1}$ Binary Counter

The 82590 can be used in two basic count modes as follows:
a. Binary Counter-For this mode of operation A_{O} output must be connected to CP2 input and the count input connected to CP1. Subdivisions of the count input frequency then appear at $A_{O}=\div 2$, $\mathrm{BO}_{\mathrm{O}}=\div 4, \mathrm{C}_{\mathrm{O}}=\div 8, \mathrm{D}_{\mathrm{O}}=\div 16$ as shown in the truth table.
b. Separate Divide by Two and Divide by Eight Count-ers-In similar manner to the 82S90 the 82S91 inherent structure allows separate use of the first and last three stages. In the first stage the input count frequency presented to CP2 appears at outputs $\mathrm{BO}_{\mathrm{O}}=\div 2, \mathrm{C}_{\mathrm{O}}=\div 4$ and $\mathrm{D}_{\mathrm{O}}=\div 8$ simultaneously. Operation of the D_{S} and R_{S} inputs remains common to all stages.

TRUTH TABLE

Binary				
Input	${ }^{\text {A }}$	B_{0}	C_{0}	D_{0}
0	0	0	0	0
1	1	0	0	0
2	0	1	0	0
3	1	1	0	0
4	0	0	1	0
5	1	0	1	0
6	0	1	1	0
7	1	1	1	0
8	0	0	0	1
9	1	0	0	1
10	0	1	0	1
11	1	1	0	1
12	0	0	1	1
13		0	,	1
14	0	1	1	1
15	1	1	1	1

3. Operation of the DS Data Strobe and RS Reset Inputs:
a. Data Strobe D_{S} Input-When $\mathrm{D}_{\mathrm{S}}=0$ the four stages of the 82S90/91 can be used as four separate latches with the outputs $A_{O}-D_{O}$ following the data presented to the inputs $D_{A}-D_{D}$ regardless of clock inputs.
With $D_{S}=1$ the four stages remain unchanged until the next clock inputs, which activate counting in accordance with the various modes described previously. The Reset RS inputs when low overrides DS as described below.
b. Reset R Input-With $R_{S}=0$ the clock inputs CP1/ CP2 and DS input are overridden, all stages of the 82S90/91 are cleared and zeros appear at the counter outputs $A_{O}-D_{O}$. When $R_{S}=1$, operation is controlled by D_{S} or CP1/CP2 clock inputs as described.
