DESCRIPTION

The 82 S200 (tri-state outputs) and the 82 S 201 (open collector outputs) are Bipolar Programmable Logic Arrays, containing 48 product terms (AND terms), and 8 sum terms (OR tems). Each OR term controls an output function which can be programmed either true active-high (F_{p}), or true active-low ($F_{p}{ }^{*}$). The true state of each output function is activated by any logical combination of 16input variables, or their complements, up to 48 terms. Both devices are mask programmable by supplying to Signetics Program Table data in one of the formats specified in this data sheet.

The 82S200 and 82S201 are fully TTL compatible, and include chip enable control for expansion of input variables, and output inhibit. They feature either open collector or tri-state outputs for ease of expansion of product terms and application in busorganized systems.
Both devices are available in commercial and military temperature ranges. For the commercial temperature range $10^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$) specify N82S200/201, I or N, and for the military temperature range $\left(-55^{\circ} \mathrm{C}\right.$ to $+125^{\circ} \mathrm{C}$) specify S82S200/201, I.

PLA EQUIVALENT LOGIC PATH

LOGIC FUNCTION

Typical Product Term:
$P_{0}=I_{0} \cdot I_{1} \cdot I_{2} \cdot I_{5} \cdot \overline{I_{13}}$
Typical Output Functions:
$F_{0}=(\overline{C E})+\left(P_{0}+P_{1}+P_{2}\right) @ S=$ Closed $F_{0}^{*}=(\overline{\mathrm{CE}})+\left(\overline{P_{0}} \cdot \overline{\mathrm{P}_{1}} \cdot \overline{\mathrm{P}_{2}}\right) @ \mathrm{~S}=$ Open NOTE
For each of the 8 outputs, elther the function Fp (active-high) or $F_{\dot{p}}$ (active low) is available but not both. The required function polarity is programmed via link (S)

APPLICATIONS*

- CRT display systems
- Random logic
- Code conversion
- Peripheral controllers
- Function generators
- Look-up and decision tables
- Microprogramming
- Address mapping
- Character generators
- Sequential controllers
- Data security encoders
- Fault detectors
- Frequency synthesizers
- For diagrams of Typical Applications reference 825100 (T.S.)/82S101 (O.C.) Data Sheet.

TRUTH TABLE

MODE	Pn	$\overline{C E}$	$\mathbf{S r} \stackrel{?}{=} \mathrm{f}(\mathrm{Pn})$	Fp	$F_{\text {p }}^{*}$
$\begin{aligned} & \text { Disabled } \\ & \text { (82S201) } \end{aligned}$	X	1	X	1	1
Disabled (82S200)				$\mathrm{Hi}-\mathrm{Z}$	$\mathrm{Hi}-\mathrm{Z}$
Read	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	Yes	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$
	X	0	No	0	1

PIN CONFIGURATION

I,	
$N C+1$	28. vcc
1, 2	27 l
1.3	26)
45	25.
1. 5	24) 1
1,6	23] 12
12 [22
1. 8	2110
1. 9	$2011 / 5$
F, 10	19] $\overline{\mathrm{CE}}$
F_{6} 11	18. F_{0}
Fs_{5} 12	17 F
F. 13	$16{ }_{5}$
Gno 14	$15 .{ }_{5}$
$\begin{aligned} & \cdot 1=\text { Ceramic } \\ & N=\text { Plastic } \end{aligned}$ tOpen during normal operation	

THERMAL RATINGS

TEMPERATURE	MILI- TARY	COM- MER- CIAL
Maximum junction Maximum ambient Allowable thermal rise ambient to junction	$175^{\circ} \mathrm{C}$	$150^{\circ} \mathrm{C}$

LOGIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS ${ }^{1}$

PARAMETER		RATING		UNIT
Vcc	Supply voltage		+7	Vdc
VIN	Input voltage		+5.5	Vdc
Vout	Output voltage		+5.5	Vdc
lin	Input currents	-30	+30	mA
lout	Output currents		+100	mA
TA	Temperature range Operating			${ }^{\circ} \mathrm{C}$
	N82S200/201	0	+75	
	S82S200/201	-55	+125	
Tstg	Storage	-65	+150	

DC ELECTRICAL CHARACTERISTICS N82S200/201: $0^{\circ} \leq T_{A} \leq+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.25 \mathrm{~V}$ S82S200/201: $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.5 \mathrm{~V}$

PARAMETER		TEST CONDITIONS	N82S200/201			S82S200/201			UNIT	
		Min	Typ ${ }^{2}$	Max	Min	Typ ${ }^{2}$	Max			
$\mathrm{V}_{1 \text { H }}$ $V_{\text {IL }}$ VIC	Input voltage ${ }^{3}$ High Low Clamp3,4		$\begin{gathered} V_{C C}=\operatorname{Max} \\ V_{C C}=\operatorname{Min} \\ V_{C C}=\operatorname{Min}, \operatorname{IIN} 7-18 \mathrm{~mA} \end{gathered}$	2	-0.8	$\begin{array}{r} 0.85 \\ -1.2 \end{array}$	2	-0.8	0.8 -1.2	V
VOH Vol	Output voltage High (82S200)3,5 Low 3 , 6	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min} \\ & \mathrm{I}_{\mathrm{OH}}=-2 \mathrm{~mA} \\ & \mathrm{IOL}=9.6 \mathrm{~mA} \end{aligned}$	2.4	0.35	0.45	2.4	0.35	0.50	V	
$\begin{aligned} & I_{\mathbb{H}} \\ & I_{I L} \end{aligned}$	Input current High Low	$\begin{gathered} V_{I N}=5.5 \mathrm{~V} \\ V_{I N}=0.45 \mathrm{~V} \end{gathered}$		$\begin{gathered} <1 \\ -10 \end{gathered}$	$\begin{gathered} 25 \\ -100 \end{gathered}$		$\begin{gathered} <1 \\ -10 \end{gathered}$	$\begin{gathered} 50 \\ -150 \end{gathered}$	$\mu \mathrm{A}$	
Iolk lo(OFF) los	Output current Leakage ${ }^{7}$ $\mathrm{Hi}-\mathrm{Z}$ state $(82 \mathrm{~S} 200)^{7}$ Short circuit (82S200)4,8	$\begin{aligned} & V_{\text {CC }}=\mathrm{Max} \\ & \mathrm{~V}_{\text {OUT }}=5.5 \mathrm{~V} \\ & \mathrm{~V}_{\text {OUT }}=5.5 \mathrm{~V} \\ & \text { VOUT }=0.45 \mathrm{~V} \\ & \text { VOUT }=0 \mathrm{~V} \end{aligned}$	-20	$\begin{gathered} 1 \\ 1 \\ -1 \end{gathered}$	$\begin{gathered} 40 \\ 40 \\ -40 \\ -70 \end{gathered}$	-15	$\begin{gathered} 1 \\ 1 \\ -1 \end{gathered}$	$\begin{gathered} 60 \\ 60 \\ -60 \\ -85 \end{gathered}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ mA	
Icc	Vcc supply current ${ }^{\text {a }}$	Vcc Max		120	170		120	180	mA	
$\mathrm{Cin}_{\mathrm{IN}}$ Cout	Capacitance ${ }^{7}$ Input Output	$\begin{gathered} V_{C C}=5.0 \mathrm{~V} \\ V_{\text {IN }}=2.0 \mathrm{~V} \\ V_{\text {OuT }}=2.0 \mathrm{~V} \end{gathered}$		8 17			8 17		pF	

AC ELECTRICAL CHARACTERISTICS $R_{1}=470 \Omega \Omega, R_{2}=1 \mathrm{k} \Omega, C_{L}=30 \mathrm{pF}$ N82S200/201: $0^{\circ} \mathrm{C} \leq T_{A} \leq+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.25 \mathrm{~V}$ S82S200/201: $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.5 \mathrm{~V}$

PARAMETER		TO	FROM	N82S200/201			S82S200/201			UNIT	
		Min		Typ ${ }^{2}$	Max	Min	Typ ${ }^{2}$	Max			
$\begin{aligned} & \mathrm{T}_{1 A} \\ & \mathrm{~T}_{C E} \end{aligned}$	Access time Input Chip enable		Output Output	Input Chip enable		$\begin{aligned} & 35 \\ & 15 \end{aligned}$	$\begin{aligned} & 50 \\ & 30 \end{aligned}$		$\begin{aligned} & 35 \\ & 15 \end{aligned}$	$\begin{aligned} & 80 \\ & 50 \end{aligned}$	ns
TCD	Disable time Chip disable	Output	Chip enable		15	30		15	50	ns	

NOTES

1. Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only, and functional operation of the device of these or any other condition above those indicated in the operation of the device specilications is not implied.
2 All typical values are at $\mathrm{VCC}=5 \mathrm{~V} . \mathrm{T}_{A}=25^{\circ} \mathrm{C}$.
2. All voltage values are with respect to network ground terminal
3. Test one at the time.
4. Measured with V_{12} applied to $\overline{C E}$ and a logic high stored

6 Measured with a programmed logic condition for which the output test is at a low logic level. Output sink current is applied thru a resistor to Vcc.
7. Measured with: $V_{I H}$ applied to $\overline{\mathrm{CE}}$.
8. Duration of short circuit should not exceed 1 second.
9. Icc is measured with the chip enable input grounded. all other inputs at 4.5 V and the outputs open

TEST LOAD CIRCUIT

TIMING DIAGRAM

VOLTAGE WAVEFORM

Measurements: All circuit delays are measured at the +1.5 V level of inputs and outputs.

TIMING DEFINITIONS

TCE Delay between beginning of Chip Enable low (with Address valid) and when Data Output becomes valid.
TCD Delay between when Chip Enable becomes high and Data Output is in off state (Hi Z Z or high).
TIA Delay between beginning of valid Input (with Chip Enable low) and when Data Output becomes valid.

16X48X8 PLA PROGRAM TABLE

[^0]
PUNCHED CARD CODING FORMAT

The PLA Program Table can be supplied directly to Signetics in punched card form,
using standard 80 -column IBM cards. For each PLA Program Table, the customer should prepare an input card deck in accordance with the following format. Product Term cards 3 through 50 can be in any
order. Not all 48 Product Terms need to be present. Unused Product Terms require no entry cards, and will be skipped during the actual programming sequence:

CARD NO.1-Free format within designated fields.

CARD NO. 2-

CARD NO. 3 through NO. 50

CARD NO. 51

Output Active Level entries are determined in accordance with the following table:

OUTPUT ACTIVE LEVEL	
Active high H	Active low L

Notes

1. Polarity programmed once only
2. Enter (H) for all unused outputs

Input Variable entries are determined in accordance with the following table:

INPUT VARIABLE		
Im	$\overline{\mathrm{Im}}$	Don't care
H	L	- (dash)

NOTE

Enter () for unused inputs of used P-terms

Output Function entries are determined in accordance with the following table:

OUTPUT FUNCTION	
Product term present in FP A	Product term not present in FP •(period)

NOTES

1. Entries independent of output polarity

2 Enter (A) lor unused outputs of used P-terms.

TWX TAPE CODING FORMAT

The PLA Program Table can be sent to Signetics in ASCII code format via airmail using any type of 8 -level tape (paper, mylar, fanfold, etc.), or via TWX: just dial (910) 339-

9283, tell the operator to turn the paper puncher on, and acknowledge. At the end of transmission instruct the operator to send tape to Signetics Order Entry.
A number of Program Tables can be se-
quentially assembled on a continuous tape as follows, however limit tape length to a roll of 1.75 inch inside diameter, and 4.25 inch outside diameter:

A. The MAIN HEADING at the beginning of tape includes the following information, with each entry preceded by a (\$) character, whether used or not:

1. Customer Name
2. Purchase Order No.
3. Customer TWX No.
4. Number of Program Tables
5. Total Number of Parts
B. Each SUB HEADING should contain specific information pertinent to each Program Table as follows, with each entry preceded by a (\$) character, whether used or not:
\qquad
6. Program Table No.
7. Date
8. Customer Symbolized Part No.
9. Revision
10. Number of Parts
C. Program Table data blocks are initiated with an STX character, and terminated with an ETX character. The body of the data consists of Output Active Level, Product Term, and Output Function information separated by appropriate identifiers in accordance with the following format:

Entries for the 3 Data Fields are determined in accordance with the following Table:

INPUT VARIABL.E		
I_{m}	T_{m}	Don't care H
L	(dash)	

note
Enter $(-)$ for unused inputs of used P-terms.

OUTPUT FUNCTION	
Product term present in Fp A	Product term not present in Fp \bullet (period)

notes

1. Entries independent of output polarity.
2. Enter (A) for unused outputs of used P-terms.

OUTPUT ACTIVE LEVEL	
Active high H	Active low L

NOTES

1. Polarity programmed once only.
2. Enter (H) for all unused outputs

Although the Product Term data are shown entered in sequence, this is not necessary. It is possible to input only one Product Term, if desired. Unused Product Terms require no entry. ETX signalling end of Program Table may occur with less than the maximum number of Product Terms entered.

NOTES

1. Corrections to any entry can be made by backspace and rubout. However, limit consecutive rubouts to less than 25.
2. P-Terms can be re-entered any number of times. The last entry for a particular P-Term will be interpreted as valid data.
3. Any P-Term can be deleted entirely by inserting the character (E) immediately following the \mathbf{P}-Term number to be deleted, i.e., 'P 25E deletes P-Term 25.
4. To tacilitate an orderly Teletype print out, carriage returns, line leeds, spaces, rubouts etc. may be interspersed between data groups, but only preceding an asterisk (').
5 Comments are allowed between data fields, provided that an asterisk (*) is notused in any Heading or Comment entry.

[^0]: -Input and Output fields of unused P-terms can be left blank. Unused inputs and outputs are PLA terminals left floating

