10-BIT SERIAL-IN, PARALLEL-OUT SHIFT REGISTER

8273

DIGITAL 8000 SERIES TTL/MSI

TRUTH TABLE

INPUT	RESET	CLOCK 1	CLOCK 2	$\mathbf{Q}_{\mathbf{n}}+1$
1	1	Pulse	0	1
0	1	Pulse	0	0
1	1	1	Pulse	1
0	1	1	Pulse	0
1	1	Pulse	1	0
0	1	Pulse	1	0
1	1	0	Pulse	0
0	1	0	Pulse	0

NOTE: The unused clock input performs the INHIBIT function. $\overline{\text { RESET }}=0 \Rightarrow \alpha=0$

DESCRIPTION

The 8273, 10-Bit Shift Register is an array of binary elements interconnected to perform the serial-in, parallel-out shift function. This device utilizes a common buffered reset and operates from either a positive or negative edge clock pulse. Clock 1 is triggered by a negative going clock pulse and Clock 2 is triggered by a positive going clock pulse. The unused clock input performs the inhibit function. The circuit configuration is arranged as a single serial input register with ten true parallel outputs.

LOGIC DIAGRAM

ELECTRICAL CHARACTERISTICS (Over Recommended Operating Temperature And Voltage)

CHARACTERISTICS	LIMITS				TEST CONDITIONS				OUTPUTS	NOTES
	MIN.	TYP.	MAX.	UNITS	"D" INPUT	CLOCK 1	CLOCK 2	RESET		
' 1 "' Output Voltage	2.6	3.4		V	2.0 V	Pulse	0.8 V		$-500 \mu \mathrm{~A}$	6
'00' Output Voltage		0.2	0.4	V	0.8 V	Pulse	0.8 V		9.6 mA	7
'00" Input Current										
"D' Input	-0.1		-1.6	mA	0.4 V					
Clock 1	-0.1		-1.6	mA		0.4 V				
Clock 2	-0.1		-1.6	mA			0.4 V			
Reset	-0.1		-1.6	mA				0.4 V		
"1' Input Current										
"D' Input			40	$\mu \mathrm{A}$	4.5 V					
Clock 1			40	$\mu \mathrm{A}$		4.5 V				
Clock 2			40	$\mu \mathrm{A}$			4.5 V			
Reset			40	$\mu \mathrm{A}$				4.5 V		
Input Voltage Rating (All Inputs)	5.5			V	10 mA	10 mA	10 mA	10 mA		

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

CHARACTERISTICS	LIMITS				TEST CONDITIONS				OUTPUTS	NOTES
	MIN.	TYP.	MAX.	UNITS	"D" INPUT	CLOCK 1	CLOCK 2	RESET		
Max. Data Transfer Rate	25	35		MHz	.					
Turn-On Delay ${ }_{\text {ton }}$										
Clock 1 to Output		32	40	ns	,		0.0V	4.5 V		10
Clock 2 to Output		28	40	ns				4.5 V		10
Reset to Output		35	50	ns		4.5 V				10
Turn-Off Delay toff										
Clock 1 to Output		25	40	ns			0.0V			10
Clock 2 to Output		19	40	ns		4.5 V				10
Clock Pulse Width										
Clock 1		16	25	ns			0.0V			10
Clock 2		12	20	ns		4.5 V				10
Set-Up Time ($\mathrm{t}_{\text {set-up }}$)										
Clock 1			15	ns			0.0V			10
Clock 2			10	ns		4.5 V				10
Hold Time (thold)										
Clock 1			15	ns			0.0 V			10
Clock 2			$\begin{aligned} & 10 \\ & 540 / \end{aligned}$	ns		4.5 V				10
Power Consumption/Supply Current		341/	540 103	mW						8
Short Circuit Output Current	-20	65	-70	mA						8,9
Input Voltage Rating										
(All Inputs)	5.5			V	10 mA	10 mA	10 mA	10 mA		

NOTES:

1. All voltage and capacitance measurements are referenced to the ground terminal. Terminals not specifically referenced are left electrically open.
2. All measurements are taken with ground pln tied to zero volts.
3. Positive current flow is defined as into the terminal referenced.
4. Positive logic definition: "UP" Level = "1", "DOWN" Leval = " 0 "
5. Precautionary measures should be taken to ensure current
limiting in accordance with Absolute Maximum Ratings shouid the isolation dlodes become forward blased.
6. Output source current is supplied through a resistor to ground.
7. Output sink current is supplied through a resistor to V_{CC}.
8. $V_{C C}=5.25 \mathrm{~V}$.
9. Not more than one output should be shorted at one time.
10. See AC Test Flgure.

AC TEST FIGURE AND WAVEFORMS

NOTES:

1. Unused clock 2 input must be grounded.
2. Input pulse characterlstics CLOCK

$$
\begin{aligned}
& \text { Amplitude }=3.0 \mathrm{~V} \\
& t_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}} \leqslant 5 \mathrm{~ns} .
\end{aligned}
$$

