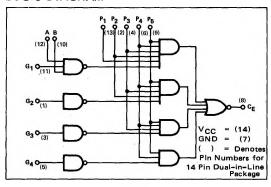


FAST CARRY EXTENDER

8261


A,F,W PACKAGES

DIGITAL 8000 SERIES TTL/MSI

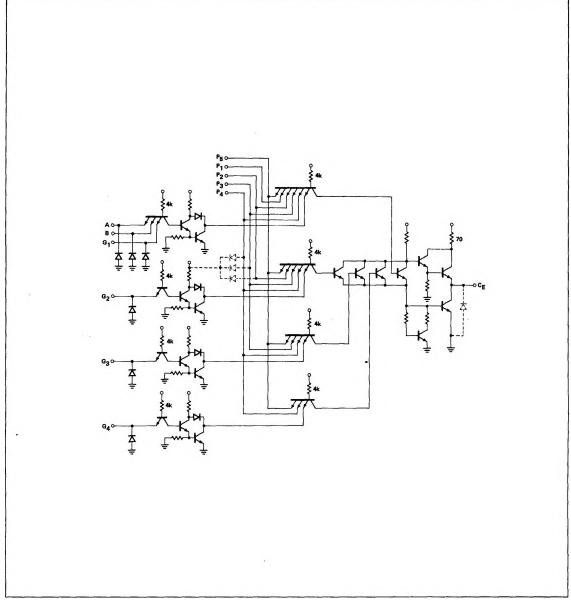
DESCRIPTION

The 8261 Fast Carry Extender is a monolithic gate array designed specifically to be used in conjunction with the 8260 Arithmetic Logic element. A 8260/8261 combination facilitates the implementation of the look-ahead technique in adder systems, thus considerably improving propagation times. The circuit structure of this array is of the familiar TTL type.

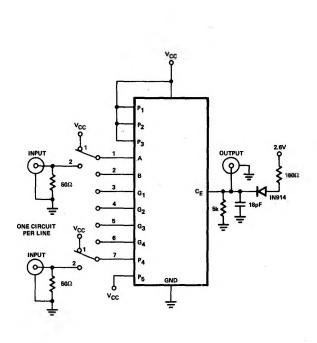
LOGIC DIAGRAM

ELECTRICAL CHARACTERISTICS (Over Recommended Operating Temperature And Voltage)

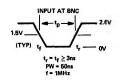
	LIMITS				TEST CONDITIONS					
CHARACTERISTICS					DRIVEN INPUTS		OTHER INPUTS		OUTPUTS	NOTES
	MIN.	TYP.	MAX.	UNITS	G,A,B	P	G,A,B	Р		
"1" Output Voltage	2.6	3.5	}	V	2.0∨				-800µA	6
"0" Output Voltage	1		0.4	V	0.8∨		4.75V	4.75V	9.6mA	7
"1" Input Current			1	ĺ		ľ				
G Input			40	μΑ	4.5V		A = 0V			
A and B Inputs			40	μΑ	4.5V	1	G ₁ = 0V			
P ₁ Input			40	μA		4.5V	•	0V	1	
P ₂ Input			80	μΑ		4.5V		0٧	ł	
P ₃ Input			120	μΑ		4.5V		0٧	1	
P ₄ and P ₅ Inputs			160	μA		4.5V		0∨	1	
"0" Input Current	1								ł	
G, A and B			-1.6	mA	0.4V			5.25V)	
P ₁ Input			-1.6	mA		0.4V	0∨.	5.25V		
P ₂ Input	1		-3.2	mA		0,4V	0V	5.25V	l .	
P ₃ Input	1		-4.8	mA		0.4V	٥٧	5.25V)
P ₄ and P ₅ Inputs	1		-6.4	mA		0.4V	0∨	5.25V	1	
Power/Current Consumption		115/22	158/30	mW/mA			5.25V	0V	1	10
Input Voltage Rating	5.5			ı v	10mA	10mA -	0V	0		


 $T_A = 25^{\circ} C$ and $V_{CC} = 5.0 V$

CHARACTERISTICS				TEST CONDITIONS						
	LIMITS				DRIVEN INPUTS		OTHER INPUTS		OUTPUTS	NOTES
	MIN.	TYP.	MAX.	UNITS	G,A,B	P	G,A,B	P		
Turn-on Delay, ton		l								
G to CE	1	16	25	ns	1	ļ				8
P to C _E		13	25	ns					1	8
Turn-off Delay, toff			Ĭ	ĺ	i	İ				
G to CE	ì	16	23	ns	l	}				8
P to C _F)	9	15	ns	1					8
Output Short Circuit					1	ſ			1	
Current	-20	1	-70	mA	5.0V	ov			0∨	10

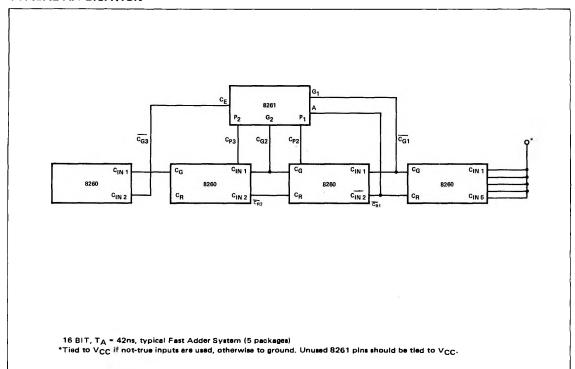

NOTES:

- All voltage and current measurements are referenced to the ground terminal. Input terminals not specifically referenced are tied to Voc.
- are tied to V_{CC} . 2. All measurements are taken with ground pin tied to zero volts.
- 3. Positive current flow is defined as into the terminal referenced.
- 4. Positive logic definition:
- "UP" Level = "1", "DOWN" Level = "0".
- Precautionary measures should be taken to ensure current limiting in accordance with Absolute Maximum Ratings should the isolation diodes become forward blased.
- Output source current is supplied through a resistor to ground.
- 7. Output sink current is supplied through a resistor to V_{CC}.
- 8. Refer to AC Test Figure.
- :9. Input "0" thresholds for $\rm P_1$ through $\rm P_5$ inputs are guaranteed to be 0.7 volts.
- 10. V_{CC} = 5.25V.


SCHEMATIC DIAGRAM

AC TEST FIGURE AND WAVEFORMS

PIN	1		I									
DESIGNATION	A	В	G ₁	G ₂	G ₃	G ₄	P4	WAVEFORE				
1	PULSE	1	1	1	1	1	1					
2	1	PULSE	1	1	1	1	1	1				
3	1	1	PULSE	1	1	1	1	A,8				
4	_1_	1	1	PULSE	1	1	1	, A,B				
5	1	1	1	1	PULSE	1	1	1				
6	1	1	1	1	1	PULSE	1					
7	2	2	2	2	2	2	PULSE	C,D				


NOTES:

- Position 1 on all switches provides a logical "1".
 Position 2 on all switches provides a logical "0" when input signal is not present.
 B. All measurements are made at 1.5 volts level.

TYPICAL APPLICATION

