

256-BIT BIPOLAR RAM (256x1 RAM) (82S116 TRI-STATE) (82S117 OPEN COLLECTOR) 82S117

FEBRUARY 1975 DIGITAL 8000 SERIES TTL/MEMORY

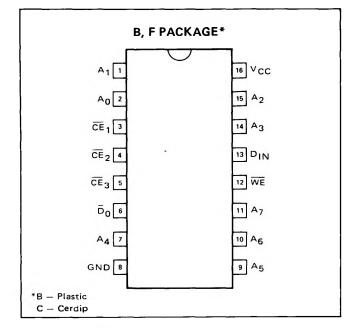
DESCRIPTION

The 82S116 and 82S117 are Schottky clamped TTL, read/write memory arrays organized as 256 words of one bit each. They feature either open collector or tri-state output options for optimization of word expansion in bussed organizations. Memory expansion is further enhanced by full on-chip address decoding, 3 chip enable inputs and PNP input transistors which reduce input loading to 25μ A for a "1" level, and – 100μ A for a "0" level.

During WRITE operation, the logical state of the output of both devices follows the complement of the data input being written. This feature allows faster execution of WRITE-READ cycles, enhancing the performance of systems utilizing indirect addressing modes, and/or requiring immediate verification following a WRITE cycle.

Both devices have fast read access and write cycle times, and thus are ideally suited in high-speed memory applications such as "Cache", buffers, scratch pads, writable control stores, etc.

Both 82S116 and 82S117 devices are available in the commercial temperature range. For the commercial temperature range, $(0^{\circ}C \text{ to } +75^{\circ}C)$ specify N82S116/117, B or F.

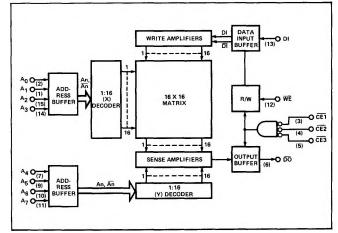

FEATURES

- ORGANIZATION 256 X 1
- ADDRESS ACCESS TIME 40ns, MAXIMUM
- WRITE CYCLE TIME 25ns, MAXIMUM
- POWER DISSIPATION 1.5mW/BIT TYPICAL
- INPUT LOADING (-100 μ A) MAXIMUM
- OUTPUT FOLLOWS COMPLEMENT OF DATA INPUT DURING WRITE
- ON-CHIP ADDRESS DECODING
- OUTPUT OPTION: TRI-STATE – 82S116 OPEN COLLECTOR – 82S117
- 16 PIN CERAMIC DIP

APPLICATIONS

BUFFER MEMORY WRITABLE CONTROL STORE MEMORY MAPPING PUSH DOWN STACK SCRATCH PAD

PIN CONFIGURATION



TRUTH TABLE

				DOUT			
MODE	CE*	WE	DIN	82S116	82\$117		
READ	0	1	х	STORED DATA	STORED DATA		
WRITE "0"	0	0	0	1	1		
WRITE "1"	0	0	1	0	0		
DISABLED	1	X	X	High-Z	1		

*''0" = All CE inputs low; "1" = one or more CE inputs high. X = Don't care.

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

	PARAMETER	RATING	UNIT
V _{CC}	Power Supply Voltage	+7	Vdc
V _{IN}	Input Voltage	+5.5	Vdc
Vout	High Level Output Voltage (82S117)	+5.5	Vdc
vo	Off-State Output Voltage (82S116)	+5.5	Vdc
 Τ _Α	Operating Temperature Range	0° to +75 $^{\circ}$	°C
T _{stg}	Storage Temperature Range	-65° to $+150^{\circ}$	°C

ELECTRICAL CHARACTERISTICS $0^{\circ}C \leq T_{A} \leq 75^{\circ}C$, 4.75V $\leq V_{CC} \leq 5.25V$

PARAMETER			LIMITS				
		TEST CONDITIONS	MIN	TYP ²	MAX	UNIT	NOTES
V _{IH}	High-Level Input Voltage	V _{CC} = 5.25V	2.0			v	
VIL	Low-Level Input Voltage	V _{CC} = 4.75V			0.85	v	1
VIC	Input Clamp Voltage	V _{CC} = 4.75V, I _{IN} = -12 mA		-1.0	-1.5	v	1,8
V _{OH}	High-Level Output Voltage (82S116)	V _{CC} = 4.75V, I _{OH} = -3.2 mA	2.6			V	1,6
VOL	Low-Level Output Voltage	V _{CC} = 4.75V, I _{OL} = 16 mA		0.35	0.45	V	1,7
IOLK	Output Leakage Current (82S117)	V _{OUT} = 5.5V		1	40	μΑ	5
IO(OFF)	HI-Z State Output Current	V _{OUT} = 5.5V		1	40	μΑ	5
	(82S116)	V _{OUT} = 0.45V		-1	-40	μΑ	5
I _{IH}	High-Level Input Current	V _{CC} = 5.25V, V _{IN} = 5.5V		1	25	μΑ	8
կլ	Low-Level Input Current	V _{CC} = 5.25V, V _{IN} = 0.45V		-10	-100	μΑ	8
I _{OS}	Short-Circuit Output Current (82S116)	V _{CC} = 5.25V, V _O = 0V	-20		-70	mA	3
I _{CC}	V _{CC} Supply Current (82S116)	V _{CC} = 5.25V		80	115	mA	4
	V _{CC} Supply Current (82S117)	V _{CC} = 5.25V		80	115	mA	4
CIN	Input Capacitance	$V_{IN} = 2.0V$		5		pF	
COUT	Output Capacitance	$V_{OUT} = 2.0V$ $V_{CC} = 5.0V$		8		pF	

NOTES:

1. All voltage values are with respect to network ground terminal.

2. All typical values are at $V_{CC} = 5V$, $T_A = +25^{\circ}C$.

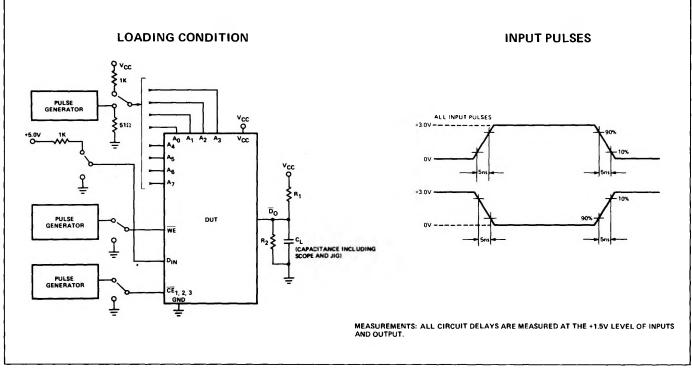
3. Duration of the short-circuit should not exceed one second.

4. I_{CC} is measured with the write enable and memory enable inputs grounded, all other inputs at 4.5V, and the output open.

5. Measured with V_{IH} applied to CE1, CE2 and CE3.

6. Measured with a logic "0" stored and V_{1L} applied to $\overline{CE_1}$, $\overline{CE_2}$ and $\overline{CE_3}$.

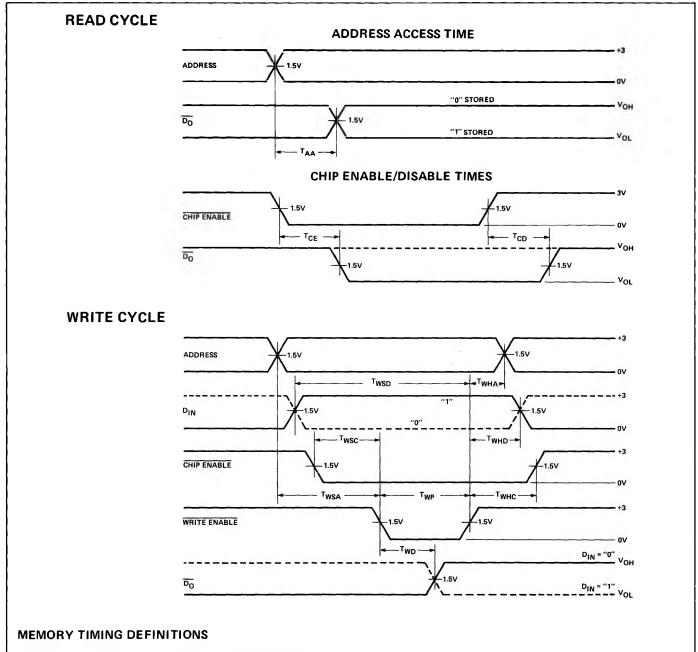
7. Measured with a logic "1" stored. Output sink current is supplied through a resistor to V_{CC} .


8. Test each input one at the time.

SIGNETICS 256-BIT BIPOLAR RAM (256 X 1 RAM) = 82S116, 82S117

SWITCHING CHARACTERISTICS $0^{\circ}C \leq T_{A} \leq +75^{\circ}C$, 4.75V $\leq V_{CC} \leq 5.25V$

PARAMETER		TEST CONDITIONS	LIMITS				1075
		TEST CONDITIONS	MIN	TYP ¹	MAX	UNIT	NOTE
Propaga	ation Delays						
T _{AA}	Address Access Time			30	40	ns	
T _{CE}	Chip Enable Access Time	$R_1 = 270\Omega$	ţ	15	25	ns	
т _{ср}	Chip Enable Output Disable Time	$R_2 = 600\Omega$	1	15	25	ns	
T _{WD}	Write Enable to Output Disable Time	C _L = 30pF		30	40	ns	i I
Write S	et-up Times						
T _{WSA}	Address to Write Enable		0	-5		ns	
T _{WSD}	Data In to Write Enable		25	15		ns	
T _{WSC}	CE to Write Enable		0	-5		ns	
Write H	old Times			·		•	
T _{WHA}	Address to Write Enable		0	-5		ns	
т _{wнd}	Data In to Write Enable		0	-5		ns	
т _{wнс}	CE to Write Enable		0	-5		ns	
T _{WP}	Write Enable Pulse Width		25	15		ns	2


AC TEST LOAD

NOTES:

- 1. Typical values are at V_{CC} = +5.0V, and T_A = +25 $^{\circ}$ C.
- 2. Minimum required to guarantee a WRITE into the slowest bit.

SWITCHING PARAMETERS MEASUREMENT INFORMATION

- T_{CE} Delay between beginning of CHIP ENABLE low (with ADDRESS valid) and when DATA OUTPUT becomes valid.
- T_{CD} Delay between when CHIP ENABLE becomes high and DATA OUTPUT is in off state.
- T_{AA} Delay between beginning of valid ADDRESS (with CHIP ENABLE low) and when DATA OUTPUT becomes valid.
- T_{WSC} Required delay between beginning of valid CHIP ENABLE and beginning of WRITE ENABLE pulse.
- T_{WHD} Required delay between end of WRITE ENABLE pulse and end of valid INPUT DATA.

- T_{WP} Width of WRITE ENABLE pulse.
- T_{WSA} Required delay between beginning of valid ADD-RESS and beginning of WRITE ENABLE pulse.
- T_{WSD} Required delay between beginning of valid DATA INPUT and end of WRITE ENABLE pulse.
- T_{WD} Delay between beginning of WRITE ENABLE pulse and when DATA OUTPUT reflects complement of DATA INPUT.
- T_{WHC} Required delay between end of WRITE ENABLE pulse and end of CHIP ENABLE.
- T_{WHA} Required delay between end of WRITE ENABLE pulse and end of valid ADDRESS.