

8-INPUT DIGITAL 1 **MULTIPLEXER**

B.F.W PACKAGES

DIGITAL 8000 SERIES TTL/MSI

DESCRIPTION

The 8-Input Digital Multiplexer is the logical equivalent of a single-pole, 8 position switch whose position is specified by a 3-bit input address.

The 8230 incorporates an INHIBIT input which, when low, allows the one-of-eight inputs selected by the address to appear on the f output and, in complement, on the f output. With the INHIBIT input high, the f output is unconditionally low and the f output is unconditionally high. The 8230 is a functional and pin-for-pin replacement for the 9312.

The 8231 is a variation of the 8230 that provides open collector output f for expansion of input terms. The 8232 is similar to the 8230 except in the effect of the INHIBIT input on the f output. With the INHIBIT low, the selected input appears at the f output and, in complement, on the f output. With the INHIBIT input high, both the f and the f output are unconditionally low.

TRUTH TABLE

A	ADDRESS				DATA INPUTS							OUTPUT		
A ₂	Α1	Αo	17	16	15	14	lз	12	11	ю	НИІ	f	8230 8231 f	8232 T
0	0	0	×	×	×	×	×	×	×	1	0	1	0	0
0	0	1	×	x	x	×	×	×	1	×	0	1	0	0
0	1	0	x	×	×	×	×	1	×	×	0	1	0	0
0	1	1	×	x	×	×	1	x	×	×	0	1	0	0
1	0	0	x	×	×	1	×	x	×	×	0	1	0	0
1	0	1 1	x	x	1	x	×	×	×	×	0	1	0	0
1	1	0	x	1	x	×	×	×	×	x	0	1	0	0
1	1	1	1 -	x	×	×	×	×	×	×	0	1	0	0
0	0	0	x	х	x	×	×	×	x	0	0	0	1	1
0	0	1	x	×	×	×	×	×	0	×	0	0	1	1
0	1	o	x	×	x	×	×	0	×	x	0	0	1 1	1
0	1	1	x	x	x	x	0	×	×	×	0	0	1	1
1 1	0	0	x	×	×	0	×	×	×	×	0	0	1 1	1
1	0	1	x	x	0	×	×	×	x	x	o	0	1	1 1
1	1	0	x	0	×	×	×	×	×	x	0	0	1	1
1	1	1	0	x	×	x	×	x	×	×	0	0	1	1
х	×	×	×	×	×	×	×	×	×	x	1	o	1_	0

x = don't care

LOGIC DIAGRAMS

ELECTRICAL CHARACTERISTICS (Over Recommended Operating Temperature And Voltage)

	LIMITS				TEST CONDITIONS						
CHARACTERISTICS	MIN.	TYP.	MAX.	UNITS	A ₁	A ₂	A ₃	INH	DATA INPUT In	OUTPUTS	NOTES
"1" Output Voltage, Output f	2.6	3.5		v		*		V8.0	2.0V	-800µA	6, 9
Output f (8230, 8232)	2.6	3.5		v	•			2.0V	•	-800μΑ	6, 9
"1" Output Leakage Current, Output f (8231) "0" Output Voltage			150 0.4	μ Α V	0.8V 0.8V	2.0V 0.8V	2.0V 0.8V	2.0V 0.8V	0.6V 0.8V	16mA	11 7, 9
"1" Input Current Inputs An, I _n Input INH, 8230 & 8231 Input INH, 8232			40 80 80	μΑ μΑ μΑ	4.5V	4.5V	4.5V	4.5 V 4.5 V	4.5V		
"0" Input Current A _n , I _n , INH (8230 & 8231)	-0.1		-1.6	mA	0.4∨	0.4∨	0.4∨		0.4V		
INH, (8232)	-0.1		-3.2	mA				0.4V			

 $T_A = 25^{\circ} C$ and $V_{CC} = 5.0 V$

	LIMITS				TEST CONDITIONS						
CHARACTERISTICS	MIN.	TYP.	MAX.	UNITS	A	A	A	INH	DATA INPUT In	OUTPUTS f f	NOTES
Propagation Delay											
A _n to f (8230, 8232)		19	30	ns							8
A _n to f (8231)	1	17	30	ns		1					8
I _n to f (8230, 8232)	1	11	20	ns							8
f to f		10	15	ns	ļ		ļ				8
I _n to f (8231)		13	24	ns							8
INH to f (8230, 8231)		18	30	ns							8
INH to f or f (8232)		11	20	ns							8
Power Consumption/Supply Current					ł		!				
8230, 8231		184/ 35	250/ 47.7	mW/mA	4.5V	4.5V	4.5V	4.5V	٥v		10
8232		173/ 33	262/ 50.0	mW/mA	4.5V	4.5V	4.5V	4.5V	0V		10
Output Short Circuit Current	ì										
Output f	-20	1	-70	mA	ov	ov	ov	0V	4.5V	0∨	10, 12
Output f (8230, 8232)	-20		-70	mA	ov	ov	0∨	٥v	ov	0V	10, 12
Input Voltage Rating	5.5		1	v	10mA	10mA	10mA	10mA	10mA	1	

^{*}See Truth Table for Logical Conditions

NOTES:

- All voltage measurements are referenced to the ground terminal. Terminals not specifically referenced are left electrically open.
- All measurements are taken with ground pin tied to zero volts.
- Positive current is defined as into the terminal referenced.
- Positive logic definition: "UP" Level = "1", "DOWN" Level = "0".
- Precautionary measures should be taken to ensure current limiting in accordance with Absolute Maximum Ratings should the isolation diodes become forward biased.
- 6. Output source current is supplied through a resistor to
- 7. Output sink current is supplied through a resistor to $V_{\overline{CC}}$.
- 8. Refer to AC Test Figures.
- 9. By DC tests per the truth table, all inputs have guaranteed thresholds of 0.8V for logical "0" and 2.0V for logical "1".
- 10. All 1_n data inputs are at OV. V_{CC} = 5.25V.
- 11. Connect an external 1k resistor from $V_{\hbox{\scriptsize CC}}$ to the output terminal for this test.
- Not more than one output should be shorted at a time.

SCHEMATIC DIAGRAMS

AC TEST FIGURE AND WAVEFORMS

	8320/32	8231
R ₁	∞	360Ω
R ₂	84.5Ω	440Ω

NOTES:

- 1. 5K, 30pF load includes test jigs and scope Impedance.
- 2. Scope terminals to be ≤ 1½" from package pins.
- 3. See truth table for logical conditions.

NON-INVERTING PATHS

INVERTING PATHS

AC TEST CONDITIONS

STEP NO.				WAVE-			
	TYPE/S	FROM-TO	10	11	A ₀	INH	FORM TYPE
1	ALL	An to T	οv	Vcc	P.G.	0 V	C, D
2	ALL		P. G.	V _{CC}	OV	0 V	C, D
2	ALL	lo to f	P. G.	0 V	lov	0 V	C, D
4	8230 8231	INH to F	Vcc	0 V	0 V	P. G.	A, B
5 6	8232 8232	INH to f	0 V Vcc	0 V 0 V	0 V	P. G. P. G.	C, D C, D

NOTE: 1. P. G. = Pulse Generator
*Both f and f are simultaneously loaded.

TYPICAL APPLICATIONS

