

LINEAR INTEGRATED CIRCUITS

SESCRIPTION

The SE/NE 592 is a monolithic, two stage, differential output, wideband video amplifier. It offers fixed gains of 100 and 400 without external components and adjustable gains from 400 to 0 with one external resistor. The input stage has been designed so that with the addition of a few external reactive elements between the gain select terminals. the circuit can function as a high pass, low pass, or band pass filter. This feature makes the circuit ideal for use as a video or pulse amplifier in communications, magnetic memories, display and video recorder systems. The 592 is a pin-for-pin replacement for the μ A733.

ATURES

- 120 MHz BANDWIDTH
- **ADJUSTABLE GAINS FROM 0 TO 400**
- ADJUSTABLE PASS BAND
- NO FREQUENCY COMPENSATION REQUIRED

ARSOLUTE MAXIMUM RATINGS

Supply Voltage	±8V
Differential Input Voltage	±5V
Common Mode Input Voltage	±6V
Output Current	10mA
Operating Temperature Range	
SE592K	-55 ⁰ C to +125 ⁰ C
NE592K	0°C to + 70°C
Storage Temperature Range	-65 ⁰ C to +150 ⁰ C

PIN CONFIGURATIONS

Thermal Resistance (θ_{J-A} , Junction to Ambient for each package): 0. 16°C/mW A Package 0.145°C/mW K Package 500mW

MANUALENT CIRCUIT

Power Dissipation

Standard Conditions (T_A = +25°C, V_S =|±6V, V_{CM} = 0 unless otherwise specified)

PARAMETER	TEST CONDITIONS		NE 592			SE 592		
		MIN	TYP	MAX	MIN	TYP	MAX	UNITS
Differential Voltage Gain								
Gain 1	Note 1	250	400	600	300	400	500	
	R _L = 2KΩ, V _{OUT} = 3V p-p							
Gain 2	Note 2	80	100	120	90	100	110	İ
Bandwidth	11010 2	30	.00	120	30	100	'''	
Gain 1	None 1	1	40			40		
	Note 1		40			40		MHz
Gain 2	Note 2		90			90		MHz
Rise Time							ł	l
Gain 1	Note 1		10.5			10.5	ļ	ns
	V _{OUT} = 1V p-p					ļ		
Gain 2	Note 2	ļ	4.5	12		4.5	10	ns
Propagation Delay		ì					Ì	
Gain 1	Note 1		7.5			7.5	ı	ns
	V _{OUT} = 1V p-p					l		
Gain 2	Note 2		6.0	10		6.0	10	ns
Input Resistance						1	ŀ	
Gain 1	Note 1		4.0			4.0		ΚΩ
Gain 2	Note 2	10	30		20	30		ΚΩ
Input Capacitance	Gain 2, Note 2	'	2.0			2.0		pF
Input Offset Current	2, 110.0 2		0.4	5.0		0.4	3.0	
Input Bies Current			9.0				20	μΑ
	DW 4 6H= 4= 10 111=			30		9.0	20	μА
Input Noise Voltage	BW 1 kHz to 10 kHz		12			12		μV rm
Input Voltage Range				±1.0			±1.0	V
Common Mode Rejection Ratio								
Gain 2	VCM ±1V, F < 100 kHz	60	86		60	86		dB
Gain 2	$VCM \pm 1V$, $F = 5 MHz$		60			60		dB
Supply Voltage Rejection Ratio			1			i		
Gain 2	$\triangle VS = \pm 0.5V$	50	70		50	70		dB
Output Offset Voltage								
Gain 3	R _L = ∞, Note 3		0.35	0.75		0.35	0.75	l v
Output Common Mode Voltage	RL = ∞	2.4	2.9	3.4	2.4	2.9	3.4	ĺ
Output Voltage Swing	R _L = 2K	3.0	4.0	0.7	3.0	4.0	0.1	•
Output Resistance	NL - 2K	3.0	20		3.0	20	Ì	Ω
	B			24			٠,	
Power Supply Current	R∟≕∞		18	24		18	24	mA
							1	ŀ
				1		{	İ	
						1	l	
		İ						
						1		
						!		
						1		
							Į	
							}	
		1				i	I	1

Recommended Operating Supply Voltages ($V_S = \pm 6.0V$) NOTES:

^{1.} Gain select pins ${\rm G}_{1A}$ and ${\rm G}_{1B}$ connected together.

^{2.} Gain select pins $\rm G_{2A}$ and $\rm G_{2B}$ connected together.

^{3.} All gain select pins open.

TEXT CIRCUITS (TA = 25°C unless otherwise specified)

CHARACTERISTICS

TYPICAL CHARACTERISTIC CURVES (Cont'd)

FIGURE'3

FIGHERAL CHARACTERISTIC CURVES (Cont'd)

