54LS/74LS384
 8-BIT SERIAL/PARALLEL TWOS COMPLEMENT MULTIPLIER

DESCRIPTION - The '384 is an 8-bit by 1-bit sequential logic element that multiplies two numbers represented in twos complement notation. The device implements Booth's algorithm internally to produce a twos complement product that needs no subsequent correction. Parallel inputs accept and store an 8-bit multiplicand $\left(X_{0}-X_{7}\right)$. The multiplier word is applied to the Y input in a serial bit stream, least significant bit first. The product is clocked out at the S output, least significant bit first.

The K input is used for expansion to longer X words, using two or more ' 384 packages. The Mode Control (M) input is used to establish the most significant package. An asynchronous Master Reset ($\overline{\mathrm{MR}}$) input clears the internal flip-flops to the start condition and enables the X latches to accept new multiplicand data.

ORDERING CODE: See Section 9

PKGS	PIN	COMMERCIAL GRADE	MILITARY GRADE	PKG
	OUT	$V_{C C}=+5.0 \mathrm{~V} \pm 5 \%$, $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \%$, $T_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	
	A	74 LS 384 PC		9 C
Ceramic DIP (D)	A	74 LS 384 DC	54 LS 384 DM	6 B
Flatpak (F)	A	74 LS 384 FC	54 LS 384 FM	4 L

$V_{c c}=\operatorname{Pin} 16$
GND $=\operatorname{Pin} 8$

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

PIN NAMES	DESCRIPTION	54/74LS (U.L.) HIGH/LOW
CP	Clock Pulse Input (Active Rising Edge)	$1.0 / 1.0$
K	Serial Expansion Input	$0.75 / 0.75$
M	Mode Control Input	$0.5 / 0.3$
$M \mathrm{MR}$	Asynchronous Master Reset Input (Active LOW)	$0.75 / 0.75$
$\mathrm{X}_{0}-\mathrm{X}_{7}$	Multiplicand Data Inputs	$0.5 / 0.3$
Y	Serial Multiplier Input	$2.0 / 2.0$
S	Serial Product Output	257.5
		(5.0)

FUNCTION TABLE

INPUTS						INTERNAL	OUTPUT	FUNCTION
	CP	K	M	Xi	Y	$\mathrm{Y}_{\mathrm{a}-1}$	S	
-		L	L					Most Significant Multiplier Device
-		CS	H					Devices Cascaded in Multiplier String
L				OP		L	L	Load New Multiplicand and Clear Internal Sum and Carry Registers
H								Device Enabled
H	」				L	L	AR	Shift Sum Register
H	\checkmark				L	H	AR	Add Multiplicand to Sum Register and Shift
H	\checkmark				H	L	AR	Subtract Multiplicand from Sum Register and Shift
H	_「				H	H	AR	Shift Sum Register

[^0]FUNCTIONAL DESCRIPTION - Referring to the logic diagram, the multiplicand ($\mathrm{X}_{0}-\mathrm{X}_{7}$) latches are enabled to receive new data when $\overline{M R}$ is LOW. Data that meet the setup time requirements is latched and stored when $\overline{M R}$ goes HIGH. The LOW signal on MR also clears the Y_{a-1} flip-flop as well as the carry-save flip-flops and the partial product register in the arithmetic section. Figure a is a conceptual logic diagram of a typical cell in the arithmetic section, except for the first (X_{7}) cell, in which K is the B_{i} input and M is incorporated into the carry logic. The cells use the carry-save technique to avoid the complexity and delays inherent in look-ahead carry schemes for longer words.

Figure b is a timing diagram for an 8×8 multiplication process. New multiplicand data enters the X latches during bit time T_{0}. It is assumed that MR goes LOW shortly after the CP rising edge that marks the beginning of T_{0} and goes HIGH again shortly after the beginning of T_{1}. The LSB (Y_{0}) of the multiplier is applied to the Y input during T_{1} and combines with X_{0} in the least significant cell to form the appropriate D input ($X_{0} Y_{0}$) to the sum flipflop. This is clocked into the sum flip-flop by the CP rising edge at the beginning of T_{2} and this LSB (S_{0}) of the product is available shortly thereafter at the S output of the package. The next-least bit Y_{1} of the multiplier is also applied during T_{2}. The detailed logic design of the cell is such that during T_{2} the D input to the sum flip-flop of the least significant cell contains not only $X_{0} Y_{1}$ but also, thanks to storage in its carry flip-flop and in the sum flip-flop of the next-least cell, the $X_{1} Y_{0}$ product. Thus the term ($X_{1} Y_{0}+X_{0} Y_{1}$) is formed at the D input of the least significant sum flip-flop during T_{2} and this next-least term S_{1} of the product is available at the S output shortly after the $C P$ rising edge at the beginning of T_{3}. Due to storage in the two preceding cells and in its own carry flipflop, the D input to the least significant sum flip-flop during T_{3} will contain the products $X_{2} Y_{0}$ and $X_{1} Y_{1}$ as well as $X_{0} Y_{2}$. During each succeeding bit time the S output contains information formed one stage further upstream. For example, the S output during T_{9} contains $\mathrm{X}_{7} \mathrm{Y}_{0}$, which was actually formed during T_{1}.

The MSB Y_{7} (the sign bit Y_{S}) of the multiplier is first applied to the Y input during T_{8} and must also be applied during bit times T_{9} through T_{16}. This extension of the sign bit is a necessary adjunct to the implementation of Booth's algorithm and is a built-in feature of the '322 Shift Register. Figure c shows the method of using two '384s to perform a $12 \times n$ bit multiplication. Notice that the sign of X is effectively extended by connecting X_{11} to $X_{4}-X_{7}$ of the most significant package. Whereas the 8×8 multiplication required 18 clock periods ($m+n$ to form the product terms plus T_{0} to clear the multiplier plus T_{17} to recognize and store S_{15}), the arrangement of Figure c requires $12+\mathrm{n}$ bits to form the product terms plus the bit times to clear the multiplier and to recognize and store $S_{n}+11$.

Fig. a Conceptual Carry Save Adder Cell

Fig. b Timing Diagram Showing 18 Clock Cycle Operation of 8×8 Multiplication

Fig. c A 12-Bit by N -Bit Two's Complement Multiplier

DC CHARATERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

SYMBOL	PARAMETER		54/74LS		UNITS

AC CHARACTERISTICS: $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 3 for waveforms and load configurations)

SYMBOL	PARAMETER			UNITS	CONDITIONS
		$C_{L}=15 \mathrm{pF}$			
		Min	Max		
$\mathrm{f}_{\text {max }}$	Maximum Clock Frequency	25		MHz	Figs. 3-1, 3-8
$\overline{\text { tPLH }}$ tPHL	Propagation Delay CP to S		$\begin{aligned} & 20 \\ & 20 \end{aligned}$	ns	
tPHL	Propagation Delay $\overline{M R}$ to S		25	ns	Figs. 3-1, 3-16

AC OPERATING REQUIREMENTS: $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	54/74LS		UNITS	CONDITIONS
		Min	Max		
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup Time HIGH or LOW K to CP	$\begin{aligned} & 18 \\ & 18 \end{aligned}$		ns	Fig. 3-6
$\begin{aligned} & \mathbf{t}_{s}(H) \\ & \mathbf{t}_{s}(\mathrm{~L}) \end{aligned}$	Setup Time HIGH or LOW Y to CP	$\begin{aligned} & 32 \\ & 32 \end{aligned}$		ns	
$\begin{aligned} & \operatorname{tn}(H) \\ & \operatorname{th}(L) \end{aligned}$	Hold Time HIGH or LOW K or Y to CP	$\begin{aligned} & 0 \\ & 0 \end{aligned}$		ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Setup Time HIGH or LOW } \\ & x_{i} \text { to } \overline{M R} \end{aligned}$	$\begin{aligned} & 13 \\ & 13 \end{aligned}$		ns	Fig. 3-13
$\begin{aligned} & \operatorname{tn}(H) \\ & \operatorname{tn}(L) \end{aligned}$	Hold Time HIGH or LOW X_{i} to $\overline{M R}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$		ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{w}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{w}}(\mathrm{~L}) \end{aligned}$	CP Pulse Width HIGH or LOW	$\begin{aligned} & 15 \\ & 15 \\ & \hline \end{aligned}$		ns	Fig. 3-8
tw (L)	$\overline{\text { MR }}$ Pulse Width LOW	20		ns	Fig. 3-16
trec	Recovery Time $\overline{M R}$ to CP	18		ns	

[^0]: $\Gamma=$ LOW-to-HIGH transition
 CS = Connected to S output of high order device
 $O P=X_{i}$ latches open for new data ($i=0,7$)
 $A R=$ Output as required per Booth's algorithm

