54FCT/74FCT543A Octal Registered Transceiver

General Description

The FCT543A octal transceiver contains two sets of D-type latches for temporary storage of data flowing in either direction. Separate Latch Enable and Output Enable inputs are provided for each register to permit independent control of inputting and outputting in either direction of data flow.
FACTTM FCTA utilizes NSC quiet series technology to provide improved quiet output switching and dynamic threshold performance.
FACT FCTA features undershoot correction and split ground bus for superior performance.

Features

- NSC 54FCT/74FCT543A is pin and functionally equivalent to IDT 54FCT/74FCT543A
- Speed controls for data flow in each direction
- Back to back latched transceiver
- Input clamp diodes to limit bus reflections
- TTL/CMOS input and output level compatible
- $\mathrm{IOL}^{2}=64 \mathrm{~mA}$ (com), 48 mA (mil)
- CMOS power levels
- 4 kV minimum ESD immunity
m Military product complaint to MIL-STD 883

Ordering Code: See Section 8

Logic Symbols

Connection Diagrams
Pin Assignment for DIP and SOIC

Pin Names	Description
$\overline{\text { OEAB }}$	A-to-B Output Enable Input (Active LOW)
$\overline{\overline{O E B A}}$	B-to-A Output Enable Input (Active LOW)
$\overline{\mathrm{CEAB}}$	A-to-B Enable Input (Active LOW)
$\overline{\mathrm{CEBA}}$	B-to-A Enable Input (Active LOW)
$\overline{\mathrm{LEAB}}$	A-to-B Latch Enable Input (Active LOW)
$\overline{\mathrm{LEBA}}$	B-to-A Latch Enable Input (Active LOW)
$\mathrm{A}_{0}-\mathrm{A}_{7}$	A-to-B Data Inputs or
	B-to-A TRI-STATE ${ }^{\text {® }}$ Outputs
$\mathrm{B}_{0}-\mathrm{B}_{7}$	B-to-A Data Inputs or
	A-to-B TRI-STATE Outputs

Functional Description

The FCT543A contains two sets of eight D-type latches, with separate input and output controls for each set. For data flow from A to B, for example, the $A-t o-B$ Enable (CEAB) input must be LOW in order to enter data from $A_{0}-$ A_{7} or take data from $B_{0}-B_{7}$, as indicated in the Data I/O Control Table. With $\overline{\text { CEAB }}$ LOW, a LOW signal on the A-to-B Latch Enable ($\overline{L E A B}$) input makes the A-to-B latches transparent; a subsequent LOW-to-HIGH transition of the LEAB signal puts the A latches in the storage mode and their outputs no longer change with the A inputs. With CEAB and OEAB both LOW, the TRI-STATE B output buffers are active and reflect the data present at the output of the A latches. Control of data flow from B to A is similar, but using the $\overline{C E B A}, \overline{L E B A}$ and $\overline{O E B A}$ inputs.

Data I/O Control Table

Input			Latch Status	Output Buffers
CEAB	$\overline{\text { LEAB }}$	$\overline{\text { OEAB }}$		
H	X	X	Latched	High Z
X	H	X	Latched	-
L	L	X	Transparent	-
X	X	H	-	High Z
L	X	L	-	Driving

$H=$ HIGH Voltage Level
L = LOW Voltage Level
$X=$ Immaterial
A-to-B data flow shown; B-to-A flow control
is the same, except using $\overline{C E B A}, \overline{L E B}$ and $\overline{\mathrm{OEBA}}$

Logic Diagram

TL/F/10667-5
Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Dlstributors for availability and specifications.
Terminal Voltage with Respect to GND (VTERM)

54FCTA
74FCTA

$$
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V}
$$

Temperature under Bias (T TIAS)
74FCTA
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+135^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
0.5 W

120 mA
Storage Temperature (TSTG)

$$
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V}
$$

54FCTA
Power Dissipation (P_{T})

Note 1: Absolute maximum ratings are those values beyond which damage to the device may occur. Exposure to absolute maximum rating conditions for extended periods may affect reliability. The databook specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables.

Recommended Operating Conditions

Supply Voltage $\left(V_{C C}\right)$	4.5 V to 5.5 V
54FCTA	4.75 V to 5.25 V
74FCTA	0 V to V_{CC}
Input Voltage	0 V to VCC
Output Voltage	
Operating Temperature $\left(\mathrm{T}_{\mathrm{A}}\right)$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
54FCTA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
74FCTA	
Junction Temperature $\left(\mathrm{T}_{\mathrm{J}}\right)$	$175^{\circ} \mathrm{C}$
CDIP	$140^{\circ} \mathrm{C}$

DC Characteristics for 'FCTA Family Device

Typical values are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, 25^{\circ} \mathrm{C}$ ambient and maximum loading. For test conditions shown as Max, use the value specified for the appropriate device type: Com: $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$; Mil: $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{HC}}=\mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}$

Symbol	Parameter	54FCTA/74FCTA			Units	Conditions		
		Min	Typ	Max				
V_{IH}	Minimum High Level Input Voltage	2.0			V			
$\mathrm{V}_{\text {IL }}$	Maximum Low Level Input Voltage			0.8	V			
I_{H}	Input Current (Except I/O Pins)			$\begin{aligned} & 5.0 \\ & 5.0 \\ & \hline \end{aligned}$	$\mu \mathrm{A}$	$V_{C C}=$ Max	$\begin{aligned} & V_{1}=V_{C C} \\ & V_{1}=2.7 V \text { (Note 2) } \end{aligned}$	
ILL	Input Low Current (Except I/O Pins)			$\begin{array}{r} -5.0 \\ -5.0 \\ \hline \end{array}$	$\mu \mathrm{A}$	$V_{C C}=\operatorname{Max}$	$\begin{aligned} & V_{1}=0.5 V(\text { Note } 2) \\ & V_{1}=G N D \end{aligned}$	
I_{H}	Input High Currents (I/O Pins)			$\begin{array}{r} 15 \\ 15 \\ \hline \end{array}$	$\mu \mathrm{A}$	$V_{C C}=\operatorname{Max}$	$\begin{aligned} & V_{1}=V_{C C} \\ & V_{1}=2.7 V \end{aligned}$	
IIL	Input Low Currents (I/O Pins)			$\begin{aligned} & -15 \\ & -15 \\ & \hline \end{aligned}$	$\mu \mathrm{A}$	$V_{C C}=$ Max	$\begin{aligned} & V_{1}=0.5 V \\ & V_{1}=G N D \end{aligned}$	
V_{IK}	Clamp Diode Voltage		-0.7	-1.2	V	$\mathrm{V}_{C C}=\mathrm{Min} ; \mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$		
los	Short Circuit Current	-60	-120		mA	$\mathrm{V}_{\mathrm{CC}}=\operatorname{Max}$ (Note 1); $\mathrm{V}_{\mathrm{O}}=$ GND		
VOH	Minimum High Level Output Voltage	2.8 3.0 V_{HC} V_{CC} 2.4 4.3 2.4 4.3			V	$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V} ; \mathrm{V}_{\mathrm{IN}}=0.2 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{HC}} ; \mathrm{l}_{\mathrm{OH}}=-32 \mu \mathrm{~A}$		
					$\begin{aligned} & V_{C C}=M i n^{\prime} \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-300 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA}(\text { Mil } \\ & \mathrm{I}_{\mathrm{OH}}=-15 \mathrm{~mA} \text { (Com) } \end{aligned}$		
$\mathrm{V}_{\text {OL }}$	Maximum Low Level Output Voltage		GND	0.2		V	$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V} ; \mathrm{V}_{\mathrm{IN}}=0.2 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{HC}} \mathrm{l}_{\mathrm{OL}}=300 \mu \mathrm{~A}$	
			$\begin{gathered} \text { GND } \\ 0.3 \\ 0.3 \\ \hline \end{gathered}$	$\begin{gathered} 0.2 \\ 0.55 \\ 0.55 \end{gathered}$	$\begin{aligned} & V_{C C}=M i n \\ & V_{I N}=V_{I L} \text { or } V_{I L} \end{aligned}$		$\begin{aligned} & \mathrm{IOL}_{\mathrm{OL}}=300 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{OL}}=48 \mathrm{~mA} \text { (Mil) } \\ & \mathrm{I}_{\mathrm{OL}}=64 \mathrm{~mA} \text { (Com) } \end{aligned}$	
ICC	Maximum Quiescent Supply Current		0.001	1.5	mA	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{HC},} \mathrm{~V}_{\mathrm{IN}} \leq \\ & \mathrm{f}_{\mathrm{I}}=0 \end{aligned}$		

DC Characteristics for 'FCTA Family Device

Typical values are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, 25^{\circ} \mathrm{C}$ ambient and maximum loading. For test conditions shown as Max, use the value specified for the appropriate device type: Com: $V_{C C}=5.0 \mathrm{~V} \pm 5 \%, T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$; Mil: $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{HC}}=\mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}$ (Continued)

Note 1: Maximum test duration not to exceed one second, not more than one output shorted at one time.
Note 2: This parameter guaranteed but not tested.
Note 3: Per TTL driven input ($\mathrm{V}_{\mathrm{IN}}=3.4 \mathrm{~V}$); all other inputs at V_{CC} or GND
Note 4: This parameter is not directly testable, but is derived for use in Total Power Supply calculations.
Note 5: Values for these conditions are examples of the ICC formula. These limits are guaranteed but not tested.
Note 6: $I_{\text {c }}=I_{\text {Quiescent }}+I_{\text {Inputs }}+I_{\text {DYnamic }}$
$I_{C}=I_{C C}+\Delta I_{C C} D_{H} N_{T}+I_{C C D}\left(f_{C P} / 2+f_{1} N_{l}\right)$
$I_{C C}=$ Quiescent Current
$\Delta I_{C C}=$ Power Supply Current for a TTL High Input $\left(V_{\mathbb{I N}}=3.4 \mathrm{~V}\right)$
$\mathrm{D}_{\mathrm{H}}=$ Duty Cycle for TTL Inputs High
$N_{T}=$ Number of Inputs at D_{H}
ICCD = Dynamic Current Caused by an Input Transition Pair (HLH or LHL)
íCP = Clock Frequency for Register Devices (Zero for Non-Register Devices)
$f_{I}=$ Input Frequency
$N_{1}=$ Number of Inputs at f_{1}
All currents are in millamps and all frequencies are in megahertz.

AC Electrical Characteristics: See Section 2 for Waveforms								
Symbol	Parameter	54FCTA/74FCTA$\begin{aligned} & T_{A}=+25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \end{aligned}$	74FCTA		54FCTA		Units	Fig. No.
			$\begin{array}{r} \mathbf{T}_{A}, \mathbf{V}_{\mathbf{C}} \\ \mathbf{R}_{\mathbf{L}}= \\ \mathbf{C}_{\mathrm{L}}= \end{array}$	$\begin{aligned} & \text { Com } \\ & 0 \Omega \\ & \mathrm{pF} \end{aligned}$		$\begin{aligned} & =\mathrm{Mil} \\ & 10 \Omega \\ & \mathrm{pF} \end{aligned}$		
		Typ	Min (Note)	Max	Min	Max		
${ }^{\text {tpLH}}$ ${ }^{\text {tpHL }}$	Propagation Delay Transparent Mode A_{n} to B_{n} or B_{n} to A_{n}		1.5	6.5			ns	2-8
$\begin{aligned} & \text { tPLH } \\ & t_{\text {PLL }} \end{aligned}$	Propagation Delay LEAB to A_{n}, $\overline{L E A B}$ to B_{n}		1.5	8			ns	2-8
$\begin{aligned} & t_{P Z H} \\ & t_{P Z Z L} \end{aligned}$	Output Enable Time $\overline{O E B A}$ or $\overline{O E A B}$ to A_{n} or B_{n} $\overline{C E B A}$ or $\overline{C E A B}$ to A_{n} or B_{n}			9			ns	2-11
$\begin{aligned} & t_{\text {PHZ }} \\ & t_{\text {PLL }} \end{aligned}$	Output Disable Time $\overline{O E B A}$ or $\overline{O E A B}$ to A_{n} or B_{n} $\overline{C E B A}$ or $\overline{C E A B}$ to A_{n} or B_{n}			7.5			ns	2-11
tsu	Set Up Time High or Low A_{n} or B_{n} to $\overline{L E B A}$ or $\overline{L E A B}$		2				ns	2-10
t_{H}	Hold Time		2				ns	2-10

Note: Minimum propagation delays are guaranteed but not listed.
Capacitance $T_{A}=+25^{\circ} \mathrm{C}, f=1.0 \mathrm{MHz}$

Symbol	Parameter (Note)	Typ	Max	Units	Conditions
C_{IN}	Input Capacitance	6	10	pF	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$
$\mathrm{C}_{\text {OUT }}$	Output Capacitance	8	12	pF	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$

Note: This parameter is measured at characterization but not tested.

