54FCT/74FCT533

Octal Transparent Latch with TRI-STATE ${ }^{\circledR}$ Outputs

General Description

The 'FCT533 consists of eight latches with TRI-STATE outputs for bus organized system applications. The flip-flops appear transparent to the data when Latch Enable (LE) is HIGH. When LE is LOW, the data that meets the setup times is latched. Data appears on the bus when the Output Enable $(\overline{O E})$ is LOW. When $\overline{O E}$ is HIGH the bus output is in the high impedance state. FACTTM FCT utilizes NSC quiet series technology to provide improved quiet output switching and dynamic threshold performance. FACT FCT features GTOTM output control and undershoot corrector in addition to a split ground bus for superior performance. The 'FCT533 is the same as the 'FCT373, except that the outputs are inverted.

Features

- NSC 54FCT/74FCT533 is pin and functionally equivalent to IDT 54FCT/74FCT533
- TRI-STATE outputs for bus interfacing
- Input clamp diodes to limit bus reflections
- TTL/CMOS input and output level compatible
- $\mathrm{IOL}^{2}=48 \mathrm{~mA}$ (Com), 32 mA (Mil)
- CMOS power levels
- ESD immunity 4 kV typ
- Military product compliant to MIL-STD 883 and Standard Military Drawing \#5962-88651

Ordering Code: See Section 8

Logic Symbols

Connection Diagrams

IEEE/IEC

Pin Assignment for DIP, SOIC and Flatpak

TL/F/10664-2

Pin Names	Description
$\mathrm{D}_{0}-\mathrm{D}_{7}$	Data Inputs
LE	Latch Enable Input (Active HIGH)
$\overline{\mathrm{OE}}$	Output Enable Input (Active LOW)
$\overline{\mathrm{O}}_{0}-\overline{\mathrm{O}}_{7}$	Complementary TRI-STATE Outputs

Function Table

Inputs			Output
LE	$\overline{\mathbf{O E}}$	D	$\overline{\mathbf{O}}$
H	L	H	L
H	L	L	H
L	L	X	$\overline{\mathrm{O}}_{\text {n }}$
X	H	X	Z

$H=$ HIGH Voltage Level
L = LOW Voltage Level
$X=\operatorname{Logic}(0)$ or logic(1) must be valid Input Level
$\mathrm{O}_{\mathrm{n}}=$ Previous $\overline{\mathrm{O}}_{\mathrm{n}}$ before high to low transition of latch enable.

Functional Description

The 'FCT533 contains eight D-type latches with TRI-STATE output buffers. When the Latch Enable (LE) input is HIGH, data on the D_{n} inputs enters the latches. In this condition the latches are transparent and the latch output will change state each time its D input changes. When LE is LOW, the latches store the information that was present on the D in-
puts a setup time preceding the HIGH-to-LOW transition of LE. The TRI-STATE buffers are controlled by the Output Enable ($\overline{\mathrm{OE}}$) input. When $\overline{\mathrm{OE}}$ is LOW the latch contents are presented inverted at the outupts $\overline{\mathrm{O}}_{7}-\overline{\mathrm{O}}_{0}$. When $\overline{\mathrm{OE}}$ is HIGH the buffers are in the high impedance mode but this does not interfere with entering new data into the latches.

Logic Diagram

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Temperature Voltage with respect to GND (VTERM)

54FCT
 -0.5 V to +7.0 V
 -0.5 V to +7.0 V
 Temperature under Bias (TBIAS)
 74FCT
 $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
 $-65^{\circ} \mathrm{C}$ to $+135^{\circ} \mathrm{C}$
 $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
 $-65^{\circ} \mathrm{C}$ to $+135^{\circ} \mathrm{C}$
 0.5W
 120 mA
 DC Output Current (lout)

Note 1: Absolute maximum ratings are those values beyond which damage to the device may occur. Exposure to absolute maximum rating conditions for extended periods may affect reliability. The databook specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables.

Recommended Operating Conditions

Supply Voltage (VCC)	
54FCT	4.5 V to 5.5 V
74FCT	4.75 V to 5.25 V

Input Voltage	0 V to V_{CC}
Output Voltage	OV to V_{CC}
Operating Temperature $\left(\mathrm{T}_{\mathrm{A}}\right)$	
54FCT	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
74FCT	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Junction Temperature $\left(T_{J}\right)$	
CDIP	$175^{\circ} \mathrm{C}$
PDIP	$140^{\circ} \mathrm{C}$

DC Characteristics for FCT Family Devices

Typical values are at $V_{C C}=5.0 \mathrm{~V}, 25^{\circ} \mathrm{C}$ ambient and maximum loading. For test conditions shown as Max, use the value specified for the appropriate device type: Com: $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$; Mil: $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \% \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.

Symbol	Parameter	54FCT/74FCT			Units	Conditions	
		Min	Typ	Max			
V_{IH}	Minimum HIGH Level Input Voltage	2.0			V		
$\mathrm{V}_{\text {IL }}$	Maximum Low Level Input Voltage			0.8	V		
$I_{\text {IH }}$	Input High Current			$\begin{aligned} & 5.0 \\ & 5.0 \\ & \hline \end{aligned}$	$\mu \mathrm{A}$	$V_{C C}=\operatorname{Max}$	$\begin{aligned} & V_{1}=V_{C C} \\ & V_{1}=2.7 V \text { (Note 2) } \end{aligned}$
IIL	Input Low Current			$\begin{aligned} & -5.0 \\ & -5.0 \end{aligned}$	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$	$\begin{aligned} & V_{1}=0.5 \mathrm{~V}(\text { Note } 2) \\ & V_{1}=G N D \end{aligned}$
loz	Maximum TRI-STATE Current			$\begin{gathered} 10.0 \\ 10.0 \\ -10.0 \\ -10.0 \\ \hline \end{gathered}$	$\mu \mathrm{A}$	$\mathrm{V}_{C C}=$ Max	$\begin{aligned} & V_{O}=V_{C C} \\ & V_{O}=2.7 \mathrm{~V} \text { (Note 2) } \\ & V_{O}=0.5 \mathrm{~V} \text { (Note 2) } \\ & V_{O}=G N D \\ & \hline \end{aligned}$
V_{IK}	Clamp Diode Voltage		-0.7	-1.2	V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min} ; \mathrm{l}_{\mathrm{N}}=-18 \mathrm{~mA}$	
los	Short Circuit Current	-60	-120		mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$ (Note 1); $\mathrm{V}_{\mathrm{O}}=$ GND	
V OH	Minimum High Level Output Voltage		3.0		V	$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V} ; \mathrm{V}_{\text {IN }}=0.2 \mathrm{~V}$ or $\mathrm{V}_{\text {HC }} ; \mathrm{l}_{\mathrm{OH}}=-32 \mu \mathrm{~A}$	
		V_{HC}	$V_{C C}$			$\begin{aligned} & V_{C C}=M i n \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$	$\mathrm{IOH}=-300 \mu \mathrm{~A}$
		2.4	4.3				$\mathrm{l}_{\mathrm{OH}}=-12 \mathrm{~mA}$ (Mil)
			4.3				$\mathrm{IOH}^{\text {O }}=-15 \mathrm{~mA}$ (Com)
V_{OL}	Maximum Low Level Output Voltage		GND	0.2	V	$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V} ; \mathrm{V}_{\mathrm{IN}}=0.2 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{HC}} ; \mathrm{l}_{\mathrm{OL}}=300 \mu \mathrm{~A}$	
			GND	0.2		$\begin{aligned} & V_{C C}=\operatorname{Min} \\ & V_{\mathbb{I N}}=V_{\mathbb{H}} \text { or } V_{\mathbb{I L}} \end{aligned}$	$\mathrm{lOL}=300 \mu \mathrm{~A}$
			0.3	0.50			$\mathrm{l}_{\mathrm{OL}}=32 \mathrm{~mA}$ (Mil)
			0.3	0.50			$\mathrm{IOL}^{\prime}=48 \mathrm{~mA}$ (Com)

DC Characteristics for FCT Family Devices
Typical values are at $\mathrm{V}_{\mathrm{C}}=5.0 \mathrm{~V}, 25^{\circ} \mathrm{C}$ ambient and maximum loading. For test conditions shown as Max, use the value specified for the appropriate device type: Com: $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$; Mil: $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \% \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. (Continued)

Symbol	Parameter	74FCT			Units	Conditions	
		Min	Typ	Max			
ICC	Maximum Quiescent Supply Current		0.001	1.5	mA	$\begin{aligned} & V_{C C}=M a x \\ & V_{I N} \geq V_{H C}, V_{I N} \leq 0.2 V \\ & \boldsymbol{f}_{I}=0 \end{aligned}$	
$\Delta l_{\text {CC }}$	Quiescent Supply Current; TTL Inputs HIGH		0.5	2.0	mA	$\begin{aligned} & V_{C C}=M a x \\ & V_{I N}=3.4 V(\text { Note } 3) \end{aligned}$	
ICCD	Dynamic Power Supply Current (Note 4)		0.25	0.45	mA/MHz	$V_{C C}=M a x$ Outputs Open $\begin{aligned} & \overline{\mathrm{OE}}=\mathrm{GND} \\ & \mathrm{LE}=\mathrm{V}_{\mathrm{CC}} \end{aligned}$ One Input Toggling 50\% Duty Cycle	$\begin{aligned} & V_{I N} \geq V_{H C} \\ & V_{I N} \leq 0.2 V \end{aligned}$
${ }^{\text {I }}$	Total Power Supply Current (Note 6)		$\begin{aligned} & 1.5 \\ & 1.8 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 5.0 \end{aligned}$	mA	$V_{C C}=M a x$ Outputs Open $\begin{aligned} & \overline{O E}=G N D \\ & L E=V_{C C} \\ & f_{\mathrm{I}}=10 \mathrm{MHz} \end{aligned}$ One Bit Toggling 50\% Duty Cycle	$\begin{aligned} & V_{I N} \geq V_{H C} \\ & V_{I N} \leq 0.2 \mathrm{~V} \end{aligned}$ $\begin{aligned} & V_{I N}=3.4 V \\ & V_{I N}=G N D \end{aligned}$
			3.0	8.0		(Note 5) $V_{C C}=\operatorname{Max}$ Outputs Open $\overline{\mathrm{OE}}=\mathrm{GND}$	$\begin{aligned} & V_{\mathbb{I N}} \geq V_{H C} \\ & V_{I N} \leq 0.2 \mathrm{~V} \end{aligned}$
				14.5		$\begin{aligned} & \mathrm{LE}=\mathrm{V}_{\mathrm{CC}} \\ & \mathrm{f}_{\mathrm{I}}=2.5 \mathrm{MHz} \end{aligned}$ Eight Bits Toggling 50\% Duty Cycle	$\begin{aligned} & V_{I N}=3.4 V \\ & V_{I N}=G N D \end{aligned}$
V_{H}	Input Hysteresis on LE Only		200		mV		

Note 1: Maximum test duration not to exceed one second, not more than one output shorted at one time.
Note 2: This parameter guaranteed but not tested.
Note 3: Per TTL driven input $\left(V_{I N}=3.4 \mathrm{~V}\right.$; all other inputs at V_{CC} or GND.
Note 4: This parameter is not directly testable, but is derived for use in Total Power Supply calculations.
Note 5: Values for these conditions are examples of the ICC formula. These limits are guaranteed but not tested.
Note 6: $\mathrm{I}_{\mathrm{c}}=$ I Quiescent $+\mathrm{I}_{\text {Inputs }}+$ Idynamic $^{\text {d }}$
$I_{C}=I_{C C}+\Delta I_{C C} D_{H} N_{T}+I_{C C D}\left(f_{C P} / 2+f_{I} N_{i}\right)$
ICC $=$ Quiescent Current
$\Delta l_{C C}=$ Power Supply Current for a TTL High Input $\left(V_{I N}=3.4 \mathrm{~V}\right)$
$D_{H}=$ Duty Cycle for TTL inputs High
$N_{T}=$ Number of Inputs at D_{H}
ICCD = Dynamic Current Caused by an Input Transition Pair (HLH or LHL)
$\mathrm{f}_{\mathrm{CP}}=$ Clock Frequency for Register Devices (Zero for Non-Register Devices)
$f_{\mathrm{I}}=$ Input Frequency
$N_{1}=$ Number of Inputs at f_{l}
All currents are in milliamps and all frequencies are in megahertz.
Note 7: For 54FCT, ICCD $=0.40 \mathrm{~mA} / \mathrm{MHz}$. Refer to applicable standard military drawing or NSC Table I for test conditions and IC/ICC limits.

AC Electrical Characteristics: See Section 2 for waveforms							
Symbol	Parameter	54FCT/74FCT	74FCT			Units	Fig. No.
		$\begin{aligned} & T_{A}=+25^{\circ} \mathrm{C} \\ & V_{C C}=+5.0 \mathrm{~V} \end{aligned}$	$\begin{gathered} T_{A}, V_{C C}=C o m \\ R_{L}=500 \Omega \\ C_{L}=50 \mathrm{pF} \\ \hline \end{gathered}$ Min (Note 1) Max	$\begin{gathered} T_{A}, V_{C C}=M i l \\ R_{L}=500 \Omega \\ C_{L}=50 \mathrm{pF} \\ \hline \end{gathered}$			
		Typ		Min	Max		
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay $D_{n} \text { to } \bar{O}_{n}$	6.0	1.510 .0	1.5	8.5	ns	2-8
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay LE to $\overline{\mathrm{O}}_{\mathrm{n}}$	9.0	2.013 .0	2.0	9.5	ns	2-8
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \end{aligned}$	Output Enable Time	8.0	1.511 .0	1.5	12.5	ns	2-11
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \end{aligned}$	Output Disable Time	6.0	$\begin{array}{ll}1.5 & 7.0\end{array}$	1.5	8.5	ns	2-11
ts	Set Up Time High or Low D_{n} to LE	1.0	2.0	2.0		ns	2-10
t_{H}	HOLD Time High or Low D_{n} to LE	1.0	1.5	3.0		ns	2-10
tw	LE Pulse Width High or Low	5.0	6.0	6.0		ns	2-9

Note 1: Minimum limits are guaranteed but not tested on Propagation Delays
Capacitance ($\left.\mathrm{T}_{\mathrm{A}}=+25 \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}\right)$

Symbol	Parameter	Typ	Max	Units	Conditions
$\mathrm{C}_{\text {in }}$	Input Capacitance	6	10	pF	$\mathrm{V}_{\mathrm{IN}}=\mathrm{OV}$
$\mathrm{C}_{\text {out }}$	Output Capacitance	8	12	pF	$\mathrm{V}_{\text {out }}=0 \mathrm{~V}$

Note: This parameter is measured at characterization but not tested Cout for 74FCT only.

