August 1998

54FCT273 Octal D-Type Flip-Flop

# National Semiconductor

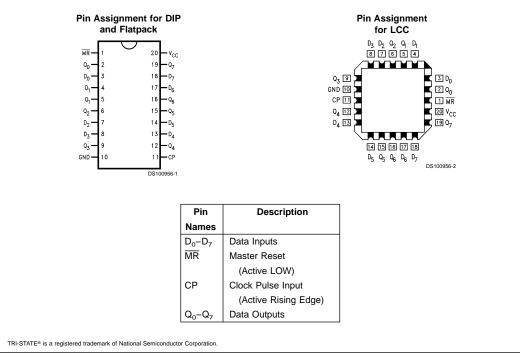
# 54FCT273 Octal D-Type Flip-Flop

#### **General Description**

The 'FCT273 has eight edge-triggered D-type flip-flops with individual D inputs and Q outputs. The common buffered Clock (CP) and Master Reset ( $\overline{\text{MR}}$ ) inputs load and reset (clear) all flip-flops simultaneously.

The register is fully edge-triggered. The state of each D input, one setup time before the LOW-to-HIGH clock transition, is transferred to the corresponding flip-flop's Q output.

All outputs will be forced LOW independently of Clock or Data inputs by a LOW voltage level on the MR input. The device is useful for applications where the true output only is required and the Clock and Master Reset are common to all storage elements.


#### Features

- Eight edge-triggered D flip-flops
- Buffered common clock
- Buffered, asynchronous Master Reset
- See 'FCT377 for clock enable version
- See 'FCT373 for transparent latch version
- See 'FCT374 for TRI-STATE® version
- Output sink capability of 32 mA, source capability of 12 mA
- TTL input and output level compatible
- CMOS power consumption
- Standard Microcircuit Drawing (SMD) 5962-8765601

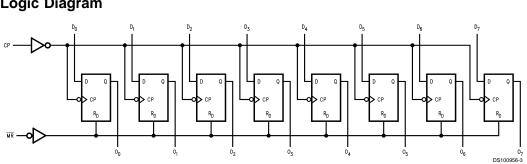
#### **Ordering Code**

| Military     | Package<br>Number | Package Description                           |  |  |
|--------------|-------------------|-----------------------------------------------|--|--|
| 54FCT273DMQB | J20A              | 20-Lead Ceramic Dual-In-Line                  |  |  |
| 54FCT273FMQB | W20A              | 20-Lead Cerpack                               |  |  |
| 54FCT273LMQB | E20A              | 20-Lead Ceramic Leadless Chip Carrier, Type C |  |  |

#### **Connection Diagrams**



© 1998 National Semiconductor Corporation DS100956


## **Truth Table**

.

#### **Mode Select-Function Table**

| Operating Mode |    | Output |                |                |
|----------------|----|--------|----------------|----------------|
|                | MR | СР     | D <sub>n</sub> | Q <sub>n</sub> |
| Reset (Clear)  | L  | Х      | Х              | L              |
| Load "1"       | н  | N      | h              | Н              |
| Load "0"       | н  | N      | 1              | L              |

Logic Diagram



H = HIGH Voltage Level steady state

h = HIGH Voltage Level one setup time prior to the LOW-to-HIGH clock tran-sition

 $\begin{array}{l} \text{stiion} \\ \mathsf{L} = \mathsf{LOW} \mbox{ Voltage Level steady state} \\ \mathsf{I} = \mathsf{LOW} \mbox{ Voltage Level one setup time prior to the LOW-to-HIGH clock transition} \\ \text{X} = \mbox{ Immaterial} \\ \mathsf{N} = \mathsf{LOW-to-HIGH clock transition} \end{array}$ 

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

## Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

| Storage Temperature              | –65°C to +150°C       |
|----------------------------------|-----------------------|
| Ambient Temperature under Bias   | –55°C to +125°C       |
| Junction Temperature under Bias  |                       |
| Ceramic                          | –55°C to +175°C       |
| V <sub>CC</sub> Pin Potential to |                       |
| Ground Pin                       | -0.5V to +7.0V        |
| Input Voltage (Note 2)           | -0.5V to +7.0V        |
| Input Current (Note 2)           | -30 mA to +5.0 mA     |
| Voltage Applied to Any Output    |                       |
| in the Disabled or               |                       |
| Power-Off State                  | -0.5V to +4.75V       |
| in the HIGH State                | –0.5V to $V_{\rm CC}$ |

| Current Applied to Output<br>in LOW State (Max)<br>DC Latchup Source Current<br>(Across Comm Operating Range | ,                      |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------|------------------------|--|--|--|--|--|
| Over Voltage Latchup                                                                                         | V <sub>CC</sub> + 4.5V |  |  |  |  |  |
| Recommended Operating<br>Conditions                                                                          |                        |  |  |  |  |  |
|                                                                                                              | ating                  |  |  |  |  |  |
|                                                                                                              | ating                  |  |  |  |  |  |
| Conditions                                                                                                   | -55°C to +125°C        |  |  |  |  |  |

Military +4.5V to +5.5V Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

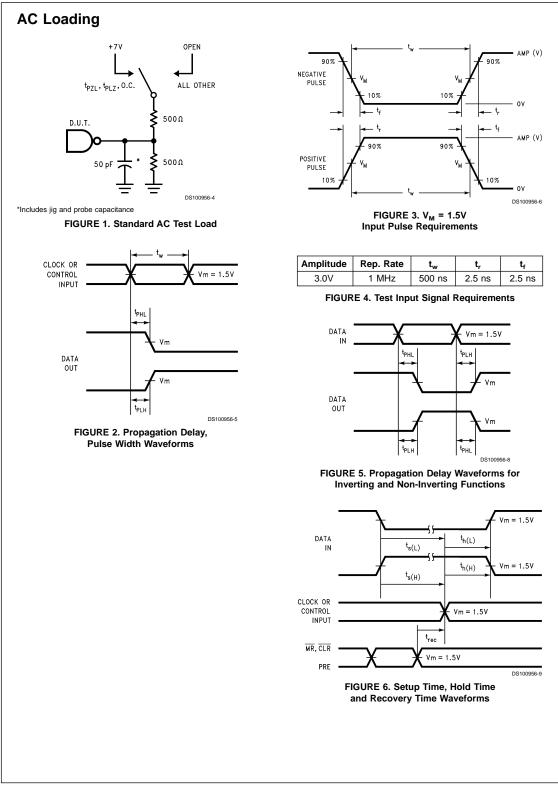
Note 2: Either voltage limit or current limit is sufficient to protect inputs.

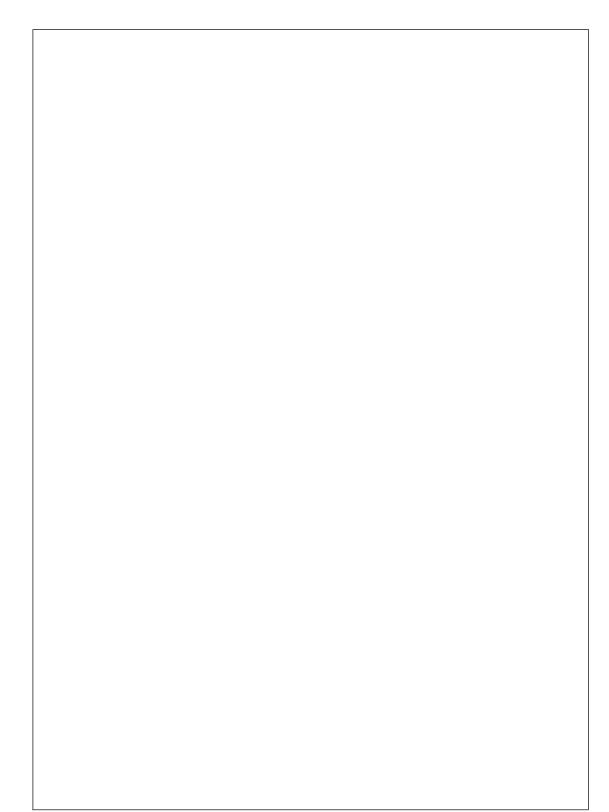
## **DC Electrical Characteristics**

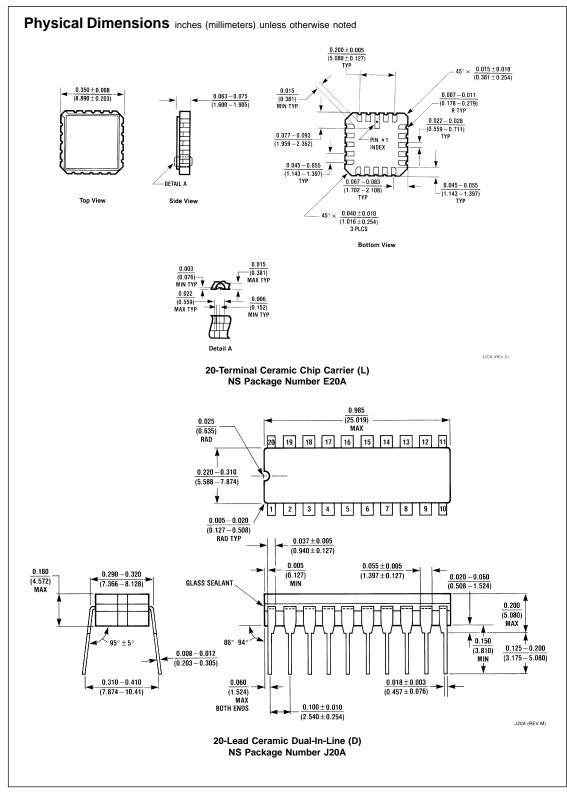
| Symbol           | Parameter                                   |       | FCT240 |      | Unite  | v               | Conditions                                                                                                                              |  |
|------------------|---------------------------------------------|-------|--------|------|--------|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------|--|
|                  |                                             |       | Min    | Max  | Units  | V <sub>cc</sub> |                                                                                                                                         |  |
| V <sub>IH</sub>  | Input HIGH Voltage                          |       | 2.0    |      | V      |                 | Recognized HIGH Signal                                                                                                                  |  |
| VIL              | Input LOW Volt                              | age   |        | 0.8  | V      |                 | Recognized LOW Signal                                                                                                                   |  |
| V <sub>CD</sub>  | Input Clamp Diode Voltage                   |       |        | -1.2 | V      | Min             | $I_{IN} = -18 \text{ mA}$                                                                                                               |  |
| V <sub>OH</sub>  | Output HIGH                                 | 54FCT | 4.3    |      | V      | Min             | I <sub>OH</sub> = -300 uA                                                                                                               |  |
|                  | Voltage                                     | 54FCT | 2.4    |      | V      | Min             | I <sub>OH</sub> = -12 mA                                                                                                                |  |
| V <sub>OL</sub>  | Output LOW                                  | 54FCT |        | 0.2  | V      | Min             | I <sub>OL</sub> = 300 μA                                                                                                                |  |
|                  | Voltage                                     | 54FCT |        | 0.5  | V      | Min             | I <sub>OL</sub> = 32 mA                                                                                                                 |  |
| IIH              | Input HIGH Current                          |       |        | 5    | μA     | Max             | V <sub>IN</sub> = 5.5V                                                                                                                  |  |
| I <sub>IL</sub>  | Input LOW Current                           |       |        | -5   | μA     | Max             | $V_{IN} = 0.0V$                                                                                                                         |  |
| l <sub>os</sub>  | Output Short-Circuit Current                |       |        | -60  | mA     | Max             | $V_{OUT} = 0.0V$                                                                                                                        |  |
| Iccq             | Power Supply Current                        |       |        | 1.5  | mA     | Max             | $V_{IN} = 0.2V$ or $V_{IN} = 5.3V$                                                                                                      |  |
| Δl <sub>cc</sub> | Power Supply Current                        |       |        | 2.0  | mA     | Max             | $V_{IN} = 3.4V$                                                                                                                         |  |
| Ісст             | I <sub>CCT</sub> Total Power Supply Current |       |        | 6.0  | mA     | Max             | $V_{IN}$ = 3.4V or $V_{IN}$ = GND, $\overline{OE}$ =<br>GND, f <sub>I</sub> = 10Mhz, outputs open,<br>one bit toggling - 50% duty cycle |  |
|                  |                                             |       |        | 4.0  | mA     | Max             | $V_{IN} = 5.3V \text{ or } V_{IN} = 0.2V, \overline{OE} = GND, f_I = 10Mhz, outputs open, one bit toggling - 50% duty cycle$            |  |
| I <sub>CCD</sub> | Dynamic I <sub>CC</sub>                     |       |        | 0.25 | mA/MHz | Max             | Outputs Open, <del>OE</del> = GND, One Bit<br>Toggling, 50% Duty Cycle                                                                  |  |

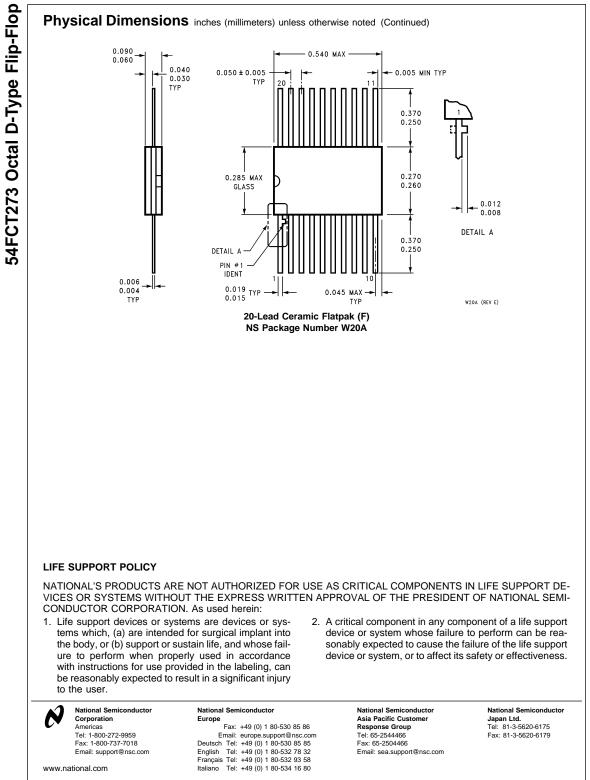
#### **AC Electrical Characteristics**

| Symbol           | Parameter                                           | $54FCT$ $T_{A} = -55^{\circ}C \text{ to } +125^{\circ}C$ $V_{CC} = 4.5V \text{ to } 5.5V$ $C_{L} = 50 \text{ pF}$ |      | Units | Fig. No.     |  |
|------------------|-----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|------|-------|--------------|--|
|                  |                                                     | Min                                                                                                               | Max  |       |              |  |
| t <sub>PLH</sub> | Propagation Delay                                   | 2.0                                                                                                               | 15.0 | ns    | Figures 2, 5 |  |
| t <sub>PHL</sub> | CP to O <sub>n</sub>                                | 2.0                                                                                                               | 15.0 |       |              |  |
| t <sub>PHL</sub> | Propagation Delay $\overline{MR}$ to O <sub>n</sub> | 2.0                                                                                                               | 15.0 | ns    | Figures 2, 5 |  |
|                  |                                                     | 1                                                                                                                 |      | - I   |              |  |


| Symbol             |                             | 54                     | -ст         | Units | Fig. No. |
|--------------------|-----------------------------|------------------------|-------------|-------|----------|
|                    |                             | T <sub>A</sub> = -55°C | C to +125°C |       |          |
|                    | Parameter                   | $V_{cc} = 4.5$         | 5V to 5.5V  |       |          |
|                    |                             | C <sub>L</sub> =       | 50 pF       |       |          |
|                    |                             | Min                    | Max         |       |          |
| t <sub>s</sub> (H) | Setup Time, HIGH            | 3.5                    |             | ns    | Figure 6 |
| t <sub>s</sub> (L) | or LOW D <sub>n</sub> to CP | 3.5                    |             |       |          |
| t <sub>h</sub> (H) | Hold Time, HIGH             | 2.5                    |             | ns    | Figure 6 |
| t <sub>h</sub> (L) | or LOW D <sub>n</sub> to CP | 2.5                    |             |       |          |
| t <sub>w</sub> (H) | Pulse Width, CP,            | 7.0                    |             | ns    | Figure 2 |
| t <sub>w</sub> (L) | HIGH or LOW                 | 7.0                    |             |       |          |
| t <sub>w</sub> (L) | Master Reset Pulse          | 7.0                    |             | ns    | Figure 2 |
|                    | Width, LOW                  |                        |             |       |          |
| t <sub>REC</sub>   | Recovery Time               | 5.0                    |             | ns    | Figure 6 |
|                    | MR to CP                    |                        |             |       |          |


# Capacitance


· · ·


| Symbol Parameter          |                    | Max | Units | Conditions<br>T <sub>A</sub> = 25°C |  |
|---------------------------|--------------------|-----|-------|-------------------------------------|--|
| C <sub>IN</sub>           | Input Capacitance  | 10  | pF    | $V_{CC} = 0V$                       |  |
| C <sub>OUT</sub> (Note 3) | Output Capacitance | 12  | pF    | V <sub>CC</sub> = 5.0V              |  |

Note 3:  $C_{OUT}$  is measured at frequency f = 1 MHz, per MIL-STD-833B, Method 3012.









National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.