

54FCT/74FCT244 Octal Buffer/Line Driver with TRI-STATE® Outputs

General Description

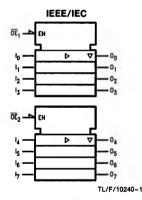
The 'FCT244 is an octal buffer and line driver designed to be employed as a memory address driver, clock driver and bus-oriented transmitter/receiver which provides improved PC board density.

FACTTM FCT utilizes NSC quiet series technology to provide improved quiet output switching and dynamic threshold performance.

FACT FCT and GTOTM output control and undershoot corrector in addition to a split ground bus for superior performance.

Features

- NSC 54FCT/74FCT244 is pin and functionally equivalent to IDT 54FCT/74FCT244
- Controlled output edge rates and undershoot for improved noise immunity. Internal split ground for improved noise immunity
- Input clamp diodes to limit bus reflections
- TTL/CMOS input and output level compatible
- I_{OL} = 64 mA (commercial) and 48 mA (military)
- CMOS power levels
- **ESD** immunity \geq 4 kV typ
- Military product compliant to MIL-STD 883C and standard military drawing #5962-87630

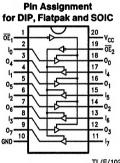

Ordering Code: See Section 8

Logic Symbol

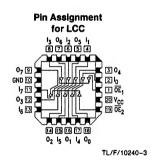
Pin Names

OE1, OE2

I0-I7 00-07



Inputs


Outputs

Description

TRI-STATE Output Enable Inputs

Connection Diagrams

TL/F/10240-2

Truth Tables

Inpu	its	Outputs
OE1	I	(Pins 12, 14, 16, 18)
L	L	L
L	н	н
н	X	Z

Inp	uts	Outputs
OE ₂	I	(Pins 3, 5, 7, 9)
L	L	L
L	н	н
н	X	Z

H = HIGH Voltage Level

L = LOW Voltage Level

X = Immaterial

Z = High Impedance

244

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Terminal Voltage with Respect to GN	ID (V _{TERM})
54FCT	-0.5V to 7.0V
74FCT	-0.5V to 7.0V
Temperature under Bias (T _{BIAS})	
74FCT	-55°C to +125°C
54FCT	-65°C to +135°C
Storage Temperature (T _{STG})	
74FCT	-55°C to +125°C
54FCT	-65°C to +150°C
Power Dissipation (PT)	0.5W
DC Output Current (I _{OUT})	120 mA

Note 1: Absolute maximum ratings are those values beyond which damage to the device may occur. Exposure to absolute maximum rating conditions for extended periods may affect reliability. The databook specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables.

Recommended Operating Conditions

Supply Voltage (V _{CC})	
54FCT	4.5V to 5.5V
74FCT	4.75V to 5.25V
Input Voltage	0V to V _{CC}
Output Voltage	0V to V _{CC}
Operating Temperature (T _A)	
54FCT	-55°C to +125°C
74FCT	-0°C to +70°C
Junction Temperature (T ₁)	
CDIP	175°C
PDIP	140°C

DC Characteristics for 'FCT Family Devices Typical values are at $V_{CC} = 5.0V$, 25°C ambient and maximum loading. For test conditons shown as Max, use the value specified for the appropriate device type: Com: $V_{CC} = 5.0V \pm 5\%$, $T_A = 0^{\circ}C$ to $+70^{\circ}C$; Mil: $V_{CC} = 5.0V \pm 10\%$, $T_A = -55^{\circ}C$ to +125°C, $V_{HC} = V_{CC} - 0.2V$

Symbol	Parameter	54FCT/74FCT			Units	Conditions		
Symbol	raidilieter	Min	Тур	Max				
VIH	Minimum High Level Input Voltage	2.0			v			
VIL	Maximum Low Level Input Voltage			0.8	v			
lін	Input High Current			5.0 5.0	μA	V _{CC} = Max	V _I = V _{CC} V _I = 2.7V (Note 2)	
կլ	Input Low Current			-5.0 -5.0	μΑ	V _{CC} = Max	V _I = 0.5V (Note 2) V _I = GND	
loz	Maximum TRI-STATE Current			10.0 10.0 - 10.0 - 10.0	μΑ	V _{CC} = Max	$V_D = V_{CC}$ $V_D = 2.7V \text{ (Note 2)}$ $V_D = 0.5V \text{ (Note 2)}$ $V_D = \text{GND}$	
VIK	Clamp Diode Voltage		-0.7	-1.2	V	$V_{CC} = Min; I_N = -18 \text{ mA}$		
los	Short Circuit Current	-60	- 120		mA	$V_{CC} = Max (Note 1); V_0 = GND$		
V _{OH}	Minimum High Level Output Voltage	2.8 V _{HC} 2.4 2.4	3.0 V _{CC} 4.3 4.3		v	$\label{eq:VCC} \begin{split} V_{CC} &= 3V; V_{IN} = 0.2V\\ V_{CC} &= Min\\ V_{IN} &= V_{IH} \text{ or } V_{IL} \end{split}$	or V_{HC} ; $I_{OH} = -32 \ \mu A$ $I_{OH} = -300 \ \mu A$ $I_{OH} = -12 \ mA \ (Mil)$ $I_{OH} = -15 \ mA \ (Com)$	
V _{OL}	Maximum Low Level Output Voltage		GND GND 0.3 0.3	0.2 0.2 0.55 0.55	v	$\label{eq:VCC} \begin{split} V_{CC} &= 3V; \ V_{IN} = 0.2V\\ V_{CC} &= Min\\ V_{IN} &= V_{IH} \ \text{or} \ V_{IL} \end{split}$	I _{OL} = 300 μA	
lcc	Maximum Quiescent Supply Current		0.001	1.5	mA	$\label{eq:VCC} \begin{array}{l} V_{CC} = Max \\ V_{IN} \geq V_{HC}, V_{IN} \leq 0.2V \\ f_I = 0 \end{array}$		
∆I _{CC}	Quiescent Supply Current; TTL Inputs HIGH		0.5	2.0	mA	V _{CC} = Max V _{IN} = 3.4V (Note 3)		

244

DC Characteristics for 'FCT Family Devices (Continued) Typical values are at $V_{CC} = 5.0V$, 25°C ambient and maximum loading. For test conditons shown as Max, use the value specified for the appropriate device type: Com: $V_{CC} = 5.0V \pm 5\%$, $T_A = 0$ °C to +70°C; Mil: $V_{CC} = 5.0V \pm 10\%$, $T_A = -55$ °C to +125°C, $V_{HC} = V_{CC} - 0.2V$

CCD	Parameter Dynamic Power	74FCT			Units	Conditions		
CCD	Dunamia Bowar	Min	Тур	Max	Onits	Conditions		
	Supply Current (Note 4)		0.15	0.55	mA/MHz	$V_{CC} = Max$ Outputs Open $\overline{OE}_1 = \overline{OE}_2 = GND$ One Input Toggling 50% Duty Cycle	$V_{IN} \ge V_{HC}$ $V_{IN} \le 0.2V$	
lc	Total Power Supply Current (Note 6)		1.5	5.5	6	$V_{CC} = Max$ Outputs Open $\overline{OE}_1 = \overline{OE}_2 = GND$	$V_{IN} \ge V_{HC}$ $V_{IN} \le 0.2V$	
			1.8	6.0	mA	f _l = 10 MHz One Bit Toggling 50% Duty Cycle	$V_{IN} = 3.4V$ $V_{IN} = GND$	
			3.0	9.0		(Note 5) $V_{CC} = Max$ Outputs Open $\overline{OE}_1 = \overline{OE}_2 = GND$	V _{IN} ≥ V _{HC} V _{IN} ≤ 0.2V	
			5.0	14.5		f _I = 2.5 MHz Eight Bits Toggling 50% Duty Cycle	$V_{IN} = 3.4V$ $V_{IN} = GND$	
V _H	Input Hysteresis on Clock Only		200		mV	*		
Note 5: Value Note 6: $I_C =$ $I_C =$ ΔI_{CC} $D_H =$ $N_T =$ I_{CCD} $f_D =$ $f_1 = I$ $N_1 =$ AII cu Note 7: For 5	parameter is not directly testable, es for these conditions are examp $ _{CUESCENT} + _{INPUTS} + _{OYD}$ $ _{CC} + \Delta _{CC} D_{H}NT + _{CCD} (fcp/:= Quescent Current= Power Supply Current for a T= Duty Cycle for TTL Inputs High• Number of Inputs at DH= Dynamic Current Caused by a= Clock Frequency for Register Dinput FrequencyNumber of Inputs at f1urrents are in milliamps and all fre54FCT, (CCD = 0.40 mA/MHz.r to applicable standard milltary dir$	oles of the MIC 2 + f _l N _l) FL High Inj n Input Tra evices (Ze quencies a	I _{CC} formul put (V _{IN} = ansition Pai aro for Non are in mega	a. These li 3.4V) ir (HLH or Register D ahertz.	mits are guarante LHL) Devices)	ed but not tested.		

AC Electrical Characteristics: See Section 2 for Waveforms

		54FCT/74FCT	74FCT		54	FCT		_
Symbol	Parameter	$T_{A} = +25^{\circ}C$ $V_{CC} = 5.0V$	T _A , V _{CC} = R _L = 50 C _L = 50	0 Ω	R _L =	$\begin{array}{l} \mathbf{T}_{\mathbf{A}}, \mathbf{V}_{\mathbf{CC}} = \mathbf{M}\mathbf{i}\mathbf{I}\\ \mathbf{R}_{\mathbf{L}} = 500\Omega\\ \mathbf{C}_{\mathbf{L}} = 50 \ \mathbf{pF} \end{array}$		Fig. No.
		Тур	Min (Note 1)	Max	Min	Max		
t _{PLH} t _{PHL}	Propagation Delay D _n to O _n	4.5	1.5	6.5	1.5	9.0	ns	2-8
t _{PZH} t _{PZL}	Output Enable Time	6.0	1.5	8.0	1.5	10.5	ns	2-11
t _{PHZ} t _{PLZ}	Output Disable Time	5.0	1.5	7.0	1.5	12.5	ns	2-11

Note 1: Minimum limits are guaranteed but not tested on propagation delays.

Capacitance ($T_A = +25^{\circ}C$, f = 1.0 MHz)

Symbol	Parameter (Note)	Тур	Max	Units	Conditions
CIN	Input Capacitance	6	10	ρF	$V_{IN} = 0V$
COUT	Output Capacitance	8	12	pF	V _{OUT} = 0V

Note: This parameter is measured at characterization but not tested. COUT for 74FCT only. 244