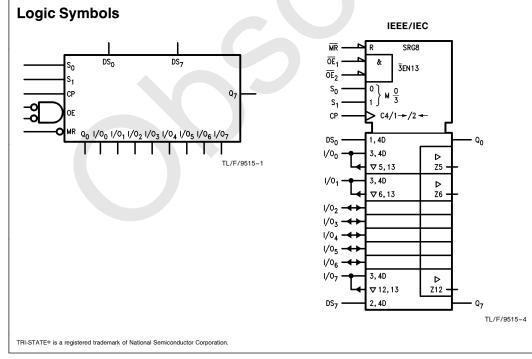
54F299,74F299

54F299 Octal Universal Shift/Storage Register with Common Parallel I/O Pins

Literature Number: SNOS185A

54F/74F299 Octal Universal Shift/Storage Register with Common Parallel I/O Pins

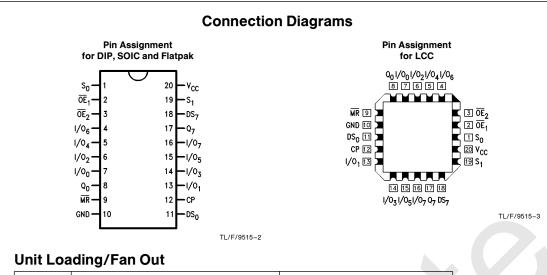
General Description


The 'F299 is an 8-bit universal shift/storage register with TRI-STATE® outputs. Four modes of operation are possible: hold (store), shift left, shift right and load data. The parallel load inputs and flip-flop outputs are multiplexed to reduce the total number of package pins. Additional outputs, Q_0-Q_7 , are provided to allow easy serial cascading. A separate active LOW Master Reset is used to reset the register.

- Features
- Common parallel I/O for reduced pin count
- Additional serial inputs and outputs for expansion
- Four operating modes: shift left, shift right, load and store
- TRI-STATE outputs for bus-oriented applications
- Guaranteed 4000V minimum ESD protection

Commercial	Military	Package Number	Package Description
74F299PC		N20A	20-Lead (0.300" Wide) Molded Dual-In-Line
	54F299DM (Note 2)	J20A	20-Lead Ceramic Dual-In-Line
74F299SC (Note 1)		M20B	20-Lead (0.300" Wide) Molded Small Outline, JEDEC
74F299SJ (Note 1)		M20D	20-Lead (0.300" Wide) Molded Small Outline, EIAJ
	54F299FM (Note 2)	W20A	20-Lead Cerpack
	54F299LM (Note 2)	E20A	20-Lead Ceramic Leadless Chip Carrier, Type C

Note 1: Devices also available in 13" reel. Use suffix = SCX and SJX.


Note 2: Military grade device with environmental and burn-in processing. Use suffix = DMQB, FMQB and LMQB.

©1995 National Semiconductor Corporation TL/F/9515

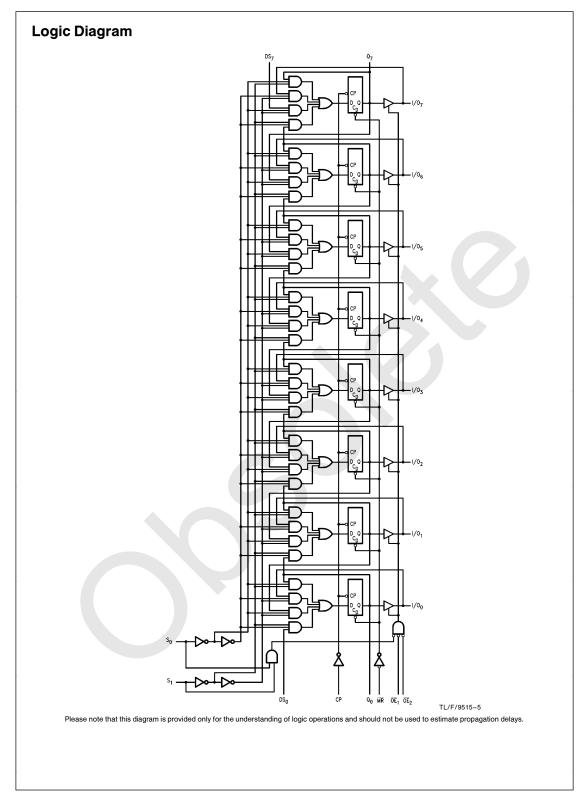
RRD-B30M75/Printed in U. S. A.

May 1995

			54F/74F
Pin Names	Description	U.L. HIGH/LOW	Input I _{IH} /I _{IL} Output I _{OH} /I _{OL}
CP	Clock Pulse Input (Active Rising Edge)	1.0/1.0	20 µA/ −0.6 mA
DS ₀	Serial Data Input for Right Shift	1.0/1.0	20 µA/ −0.6 mA
DS7	Serial Data Input for Left Shift	1.0/1.0	20 µA/ −0.6 mA
S ₀ , S ₁	Mode Select Inputs	1.0/2.0	20 µA/−1.2 mA
MR	Asynchronous Master Reset Input (Active LOW)	1.0/1.0	20 µA/ −0.6 mA
$\overline{OE}_1, \overline{OE}_2$	TRI-STATE Output Enable Inputs (Active LOW)	1.0/1.0	20 µA/−0.6 mA
1/0 ₀ -1/0 ₇	Parallel Data Inputs or	3.5/1.083	70 µA/−0.65 mA
	TRI-STATE Parallel Outputs	150/40(33.3)	-3 mA/24 mA (20 mA)
Q ₀ , Q ₇	Serial Outputs	50/33.3	-1 mA/20 mA

Functional Description

The 'F299 contains eight edge-triggered D-type flip-flops and the interstage logic necessary to perform synchronous shift left, shift right, parallel load and hold operations. The type of operation is determined by S₀ and S₁, as shown in the Mode Select Table. All flip-flop outputs are brought out through TRI-STATE buffers to separate I/O pins that also serve as data inputs in the parallel load mode. Q₀ and Q₇ are also brought out on other pins for expansion in serial shifting of longer words.


A LOW signal on $\overline{\text{MR}}$ overrides the Select and CP inputs and resets the flip-flops. All other state changes are initiated by the rising edge of the clock. Inputs can change when the clock is in either state provided only that the recommended setup and hold times, relative to the rising edge of CP, are observed. A HIGH signal on either $\overline{\text{OE}}_1$ or $\overline{\text{OE}}_2$ disables the TRI-STATE buffers and puts the I/O pins in the high impedance state. In this condition the shift, hold, load and reset operations can still occur. The TRI-STATE outputs are also disabled by HIGH signals on both S_0 and S_1 in preparation for a parallel load operation.

Mode Select Table Inputs Response MR S1 S0 CP х х х Asynchronous Reset; $Q_0 - Q_7 = LOW$ L нн_⁄ Parallel Load; I/O_n \rightarrow Q_n н Shift Right; $DS_0 \rightarrow Q_0, Q_0 \rightarrow Q_1$, etc. L H 🗸 н ннц 🗸 Shift Left; $DS_7 \rightarrow Q_7, Q_7 \rightarrow Q_6$, etc. LLX н Hold

H = HIGH Voltage Level

L = LOW Voltage Level

X = Immaterial ____ = LOW-to-HIGH Clock Transition

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Storage Temperature	-65°C to +150°C
Ambient Temperature under Bias	-55°C to +125°C
Junction Temperature under Bias	-55°C to +175°C
Plastic	-55°C to +150°C
V _{CC} Pin Potential to	
Ground Pin	-0.5V to $+7.0V$
Input Voltage (Note 2)	-0.5V to $+7.0V$
Input Current (Note 2)	-30 mA to $+5.0$ mA
ESD Last Passing Voltage (Min)	4000V
Note 1: Absolute maximum ratings are values	s beyond which the device may

be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

Note 2: Either voltage limit or current limit is sufficient to protect inputs.

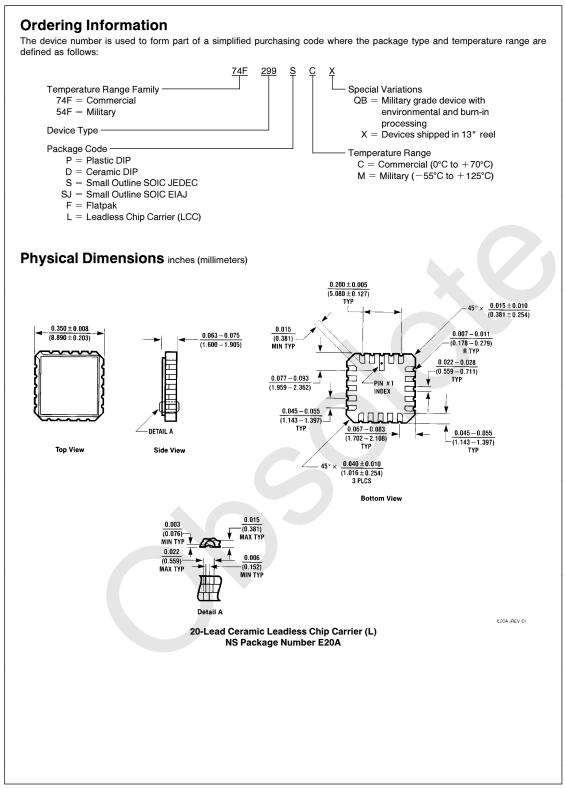
DC Electrical Characteristics

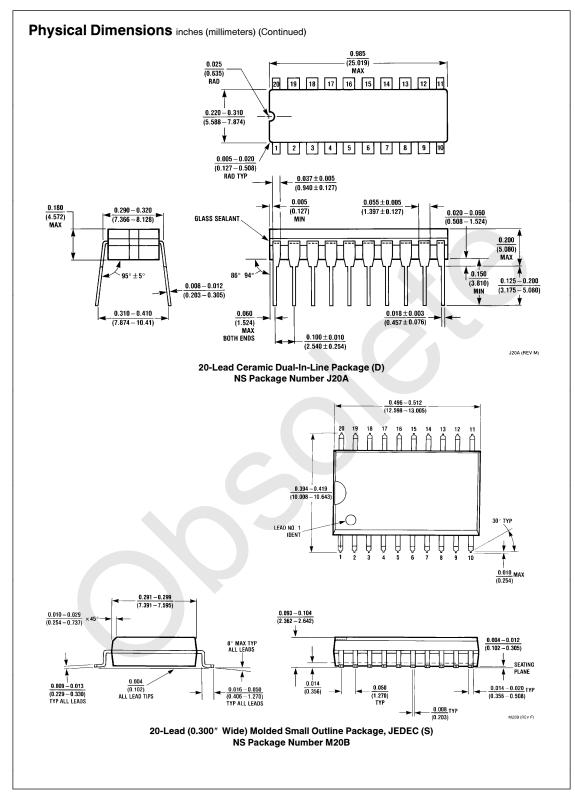
Voltage Applied to Output in HIGH State (with $V_{CC} = 0V$)	
Standard Output	-0.5V to V _{CC}
TRI-STATE Output	-0.5V to +5.5V
Current Applied to Output	

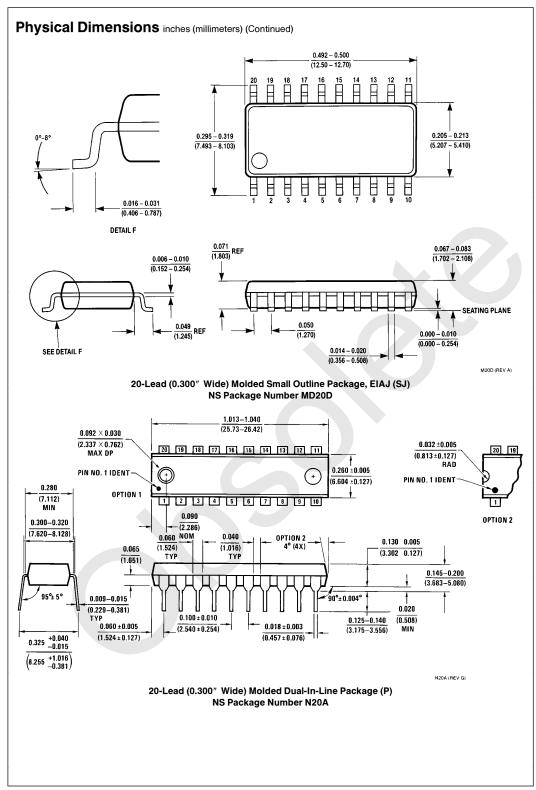
in LOW State (Max)

Recommended Operating Conditions

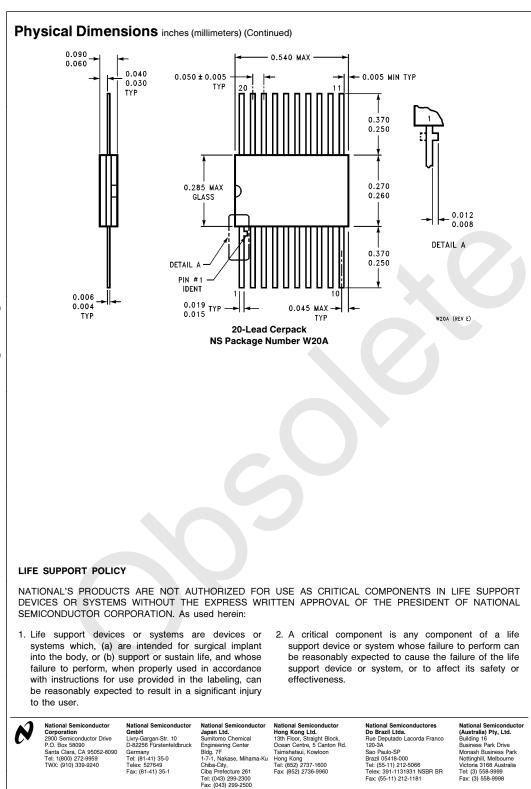
Free Air Ambient Temperature	
Military	-55°C to +125°C
Commercial	0°C to +70°C
Supply Voltage	
Military	+4.5V to +5.5V
Commercial	+4.5V to +5.5V


twice the rated I_{OL} (mA)


Symbol	Paramet	Parameter		54F/74F		Units	vcc	Conditions
Symbol	Farameter		Min	Тур	Max	Units	vcc	Conditions
VIH	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal
V _{IL}	Input LOW Voltage				0.8	V		Recognized as a LOW Signal
V _{CD}	Input Clamp Diode Volt	age			-1.2	V	Min	$I_{IN} = -18 \text{ mA}$
V _{OH}	Output HIGH Voltage	54F 10% V _{CC} 54F 10% V _{CC} 74F 10% V _{CC} 74F 10% V _{CC} 74F 5% V _{CC} 74F 5% V _{CC}	2.5 2.4 2.5 2.4 2.7 2.7			v	Min	$\begin{split} I_{OH} &= -1 \text{ mA} (Q_0, Q_7, I/O_n) \\ I_{OH} &= -3 \text{ mA} (I/O_n) \\ I_{OH} &= -1 \text{ mA} (Q_0, Q_7, I/O_n) \\ I_{OH} &= -3 \text{ mA} (I/O_n) \\ I_{OH} &= -1 \text{ mA} (Q_0, Q_7, I/O_n) \\ I_{OH} &= -3 \text{ mA} (I/O_n) \end{split}$
V _{OL}	Output LOW Voltage	54 10% V _{CC} 74 10% V _{CC} 74 10% V _{CC}			0.5 0.5 0.5	v	Min	
IIH	Input HIGH Current	54F 74F			20.0 5.0	μA	Max	$V_{\text{IN}} = 2.7V \text{ (CP, } DS_0, DS_7, S_0, S_1, \\ \overline{\text{MR}}, \overline{\text{OE}}_1, \overline{\text{OE}}_2)$
IBVI	Input HIGH Current Breakdown Test	54F 74F			100 7.0	μA	Max	$V_{IN} = 7.0V (CP, DS_0, DS_7, S_0, S_1, \frac{1}{MR, OE_1, OE_2})$
I _{BVIT}	Input HIGH Current Breakdown Test (I/O)	54F 74F			1.0 0.5	mA	Max	$V_{\rm IN} = 5.5 V \left({\rm I}/{\rm O}_{\rm n} \right)$
ICEX	Output HIGH Leakage Current	54F 74F			250 50	μA	Max	$V_{OUT} = V_{CC}$
V _{ID}	Input Leakage Test	74F	4.75			v	0.0	$I_{ID} = 1.9 \mu A$ All Other Pins Grounded
I _{OD}	Output Leakage Circuit Current	74F			3.75	μΑ	0.0	V _{IOD} = 150 mV All Other Pins Grounded
IIL	Input LOW Current				-0.6 -1.2	mA	Мах	
I _{IH} + I _{OZH}	Output Leakage Current				70	μΑ	Мах	$V_{I/O} = 2.7V (I/O_n)$
I _{IL} + I _{OZL}	Output Leakage Currer	nt			-650	μΑ	Мах	$V_{I/O} = 0.5V (I/O_n)$
l _{OS}	Output Short-Circuit Cu	ırrent	-60		-150	mA	Мах	V _{OUT} = 0V
I _{ZZ}	Bus Drainage Test				500	μΑ	0.0V	$V_{OUT} = 5.25V$
Іссн	Power Supply Current			68	95	mA	Max	V _O = HIGH
I _{CCL}	Power Supply Current			68	95	mA	Max	$V_{O} = LOW$
I _{CCZ}	Power Supply Current			68	95	mA	Max	V _O = HIGH Z


			74F		5	4F	74	4F	
Symbol	Parameter	$\begin{array}{l} \textbf{T_A}=\ +25^\circ\textbf{C}\\ \textbf{V_{CC}}=\ +5.0\textbf{V}\\ \textbf{C_L}=\ 50\ \textbf{pF} \end{array}$			T _A , V _{CC} = Mil C _L = 50 pF		$T_A, V_{CC} = Com$ $C_L = 50 pF$		Units
		Min	Тур	Max	Min	Max	Min	Мах	
f _{max}	Maximum Input Frequency	70	100		85		70		MHz
t _{PLH} t _{PHL}	Propagation Delay CP to Q_0 or Q_7	4.0 4.5	7.0 6.5	8.0 8.0	4.0 4.5	9.0 9.5	4.0 4.5	8.5 8.5	ns
t _{PLH} t _{PHL}	Propagation Delay CP to I/O _n	3.5 4.0	7.0 8.5	9.0 9.0	3.5 4.0	10.0 11.0	3.5 4.0	10.0 10.0	113
t _{PHL}	Propagation Delay $\overline{\text{MR}}$ to Q ₀ or Q ₇	5.5	7.5	9.5	5.5	12.5	5.5	10.5	- ns
t _{PHL}	Propagation Delay MR to I/O _n	5.5	11.0	10.0	5.5	12.0	5.5	10.5	- 113
t _{PZH} t _{PZL}	Output Enable Time \overline{OE} to I/O _n	3.5 4.0	6.0 7.0	8.0 10.0	3.0 4.0	9.5 13.0	3.5 4.0	9.0 11.0	- ns
t _{PHZ} t _{PLZ}	Output Disable Time OE to I/O _n	2.0 1.0	4.5 4.0	6.0 5.5	1.5 1.0	7.0 6.5	2.0 1.0	7.0 6.5	
PZH PZL	Output Enable Time S_n to I/O _n	3.5 4.0		9.0 10.0	3.0 4.0	10.5 13.0	3.5 4.0	10.0 11.0	ns
PHZ	Output Disable Time S _n to I/O _n	2.5 1.5		6.0 5.5	1.5 1.0	7.0 6.5	2.5 1.5	7.0 6.5	ns

AC Operating Requirements


		74F	54F	-	74	ŧF	
Symbol	Parameter	$\begin{array}{l} \textbf{T_A}=\ +\ \textbf{25^{\circ}C}\\ \textbf{V_{CC}}=\ +\ \textbf{5.0V} \end{array}$	${\sf T}_{\sf A}, {\sf V}_{\sf CC}={\sf Mil}$		$T_A, V_{CC} = Com$		Units
		Min Max	Min	Max	Min	Мах	
t _s (H) t _s (L)	Setup Time, HIGH or LOW S_0 or S_1 to CP	8.5 8.5	10.0 7.5		8.5 8.5		ns
t _h (H) t _h (L)	Hold Time, HIGH or LOW S_0 or S_1 to CP	0 0	0 0		0 0		113
t _s (H) t _s (L)	Setup Time, HIGH or LOW I/O _n , DS ₀ or DS ₇ to CP	5.0 5.0	5.0 5.0		5.0 5.0		– ns
t _h (H) t _h (L)	Hold Time, HIGH or LOW I/O _n , DS ₀ or DS ₇ to CP	2.0 2.0	2.0 2.0		2.0 2.0		_ 113
t _w (H) t _w (L)	CP Pulse Width HIGH or LOW	5.0 5.0	5.0 5.0		5.0 5.0		ns
t _w (L)	MR Pulse Width, LOW	5.0	6.0		5.0		ns
t _{rec}	Recovery Time, MR to CP	7.0	12.0		7.0		ns

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Audio	www.ti.com/audio	Communications and Telecom	www.ti.com/communications
Amplifiers	amplifier.ti.com	Computers and Peripherals	www.ti.com/computers
Data Converters	dataconverter.ti.com	Consumer Electronics	www.ti.com/consumer-apps
DLP® Products	www.dlp.com	Energy and Lighting	www.ti.com/energy
DSP	dsp.ti.com	Industrial	www.ti.com/industrial
Clocks and Timers	www.ti.com/clocks	Medical	www.ti.com/medical
Interface	interface.ti.com	Security	www.ti.com/security
Logic	logic.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Power Mgmt	power.ti.com	Transportation and Automotive	www.ti.com/automotive
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Mobile Processors	www.ti.com/omap		
Wireless Connectivity	www.ti.com/wirelessconnectivity		
		u Hama Dawa	a O a Al a a m

TI E2E Community Home Page

e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2011, Texas Instruments Incorporated