54F/74F258A Quad 2-Input Multiplexer with TRI-STATE® Outputs

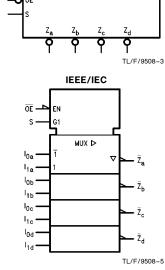
General Description

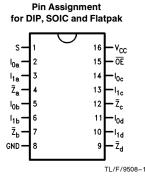
The 'F258A is a quad 2-input multiplexer with TRI-STATE outputs. Four bits of data from two sources can be selected using a common data select input. The four outputs present the selected data in the complement (inverted) form. The outputs may be switched to a high impedance state with a HIGH on the common Output Enable (\overline{OE}) input, allowing the outputs to interface directly with bus-oriented systems.

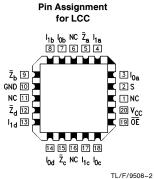
Features

- Multiplexer expansion by tying outputs together
- Inverting TRI-STATE outputs
- Guaranteed 4000V minimum ESD protection

Commercial	Military	Package Number	Package Description	
74F258APC		N16E	16-Lead (0.300" Wide) Molded Dual-In-Line	
	54F258ADM (Note 2)	J16A	16-Lead Ceramic Dual-In-Line	
74F258ASC (Note 1)		M16A	16-Lead (0.150" Wide) Molded Small Outline, JEDEC	
74F258ASJ (Note 1)		M16D	16-Lead (0.300" Wide) Molded Small Outline, EIAJ	
	54F258AFM (Note 2)	W16A	16-Lead Cerpack	
	54F258ALL (Note 2)	E20A	20-Lead Ceramic Leadless Chip Carrier, Type C	


Note 1: Devices also available in 13" reel. Use suffix = SCX and SJX.


11b 10c 11c 10d 11d


Note 2: Military grade device with environmental and burn-in processing. Use suffix = DMQB, FMQB and LMQB.

Logic Symbols

Connection Diagrams

-STATE® is a registered trademark of National Semiconduc

© 1995 National Semiconductor Corporation

Unit Loading/Fan Out

		54F/74F			
Pin Names	Description	U.L. HIGH/LOW	Input I _{IH} /I _{IL} Output I _{OH} /I _{OL}		
s	Common Data Select Input	1.0/1.0	20 μA/ - 0.6 mA		
ŌĒ	TRI-STATE Output Enable Input (Active LOW)	1.0/1.0	20 μA/ – 0.6 mA		
I _{0a} -I _{0d}	Data Inputs from Source 0	1.0/1.0	20 μA/ -0.6 mA		
I _{1a} -I _{1d}	Data Inputs from Source 1	1.0/1.0	20 μA/ -0.6 mA		
$\overline{Z}_a - \overline{Z}_d$	TRI-STATE Inverting Data Outputs	150/40 (33.3)	-3 mA/24 mA (20 mA)		

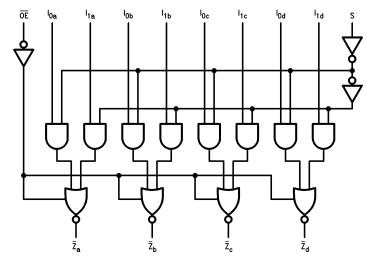
Functional Description

The 'F258A is a quad 2-input multiplexer with TRI-STATE outputs. It selects four bits of data from two sources under control of a common Select input (S). When the Select input is LOW, the l_{0x} inputs are selected and when Select is HIGH, the l_{1x} inputs are selected. The data on the selected inputs appears at the outputs in inverted form. The 'F258A is the logic implementation of a 4-pole, 2-position switch where the position of the switch is determined by the logic levels supplied to the Select input. The logic equation for the outputs is shown below:

$$\overline{Z}_n = \overline{OE} \bullet (I_{1n} \bullet S + I_{0n} \bullet \overline{S})$$

When the Output Enable input (\overline{OE}) is HIGH, the outputs are forced to a high impedance OFF state. If the outputs of the TRI-STATE devices are tied together, all but one device must be in the high impedance state to avoid high currents that would exceed the maximum ratings. Designers should ensure that Output Enable signals to TRI-STATE devices whose outputs are tied together are designed so there is no overlap.

Truth Table


Output Enable	Select Input	1	ata outs	Output
ŌĒ	S	I ₀	l ₁	Z
Н	Х	Х	Х	Z
L	Н	X	L	Н
L	Н	X	Н	L
L	L	L	Χ	н
L	L	Н	Χ	L

 $\begin{array}{ll} H \,=\, HIGH\ Voltage\ Level \\ L \,=\, LOW\ Voltage\ Level \end{array}$

X = Immaterial

Z = High Impedance

Logic Diagram

TL/F/9508-4

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

 $\begin{array}{lll} \mbox{Storage Temperature} & -65^{\circ}\mbox{C to} + 150^{\circ}\mbox{C} \\ \mbox{Ambient Temperature under Bias} & -55^{\circ}\mbox{C to} + 125^{\circ}\mbox{C} \\ \mbox{Junction Temperature under Bias} & -55^{\circ}\mbox{C to} + 175^{\circ}\mbox{C} \\ \mbox{Plastic} & -55^{\circ}\mbox{C to} + 150^{\circ}\mbox{C} \\ \end{array}$

V_{CC} Pin Potential to

Ground Pin -0.5V to +7.0V Input Voltage (Note 2) -0.5V to +7.0V Input Current (Note 2) -30 mA to +5.0 mA

Voltage Applied to Output in HIGH State (with $V_{CC} = 0V$)

TRI-STATE Output
Current Applied to Output

in LOW State (Max) twice the rated I_{OL} (mA) ESD Last Passing Voltage (Min) 4000V

Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

Note 2: Either voltage limit or current limit is sufficient to protect inputs.

Recommended Operating Conditions

Free Air Ambient Temperature

Military $-55^{\circ}\text{C to} + 125^{\circ}\text{C}$ Commercial $0^{\circ}\text{C to} + 70^{\circ}\text{C}$

Supply Voltage

Military + 4.5V to + 5.5V Commercial + 4.5V to + 5.5V

DC Electrical Characteristics

Symbol	Paramotor		54F/74F			Units	ν _{cc}	Conditions
Зушьог	raiaille	Parameter -		Тур	Max	Units	v _{CC}	Conditions
V _{IH}	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signa
V _{IL}	Input LOW Voltage				0.8	V		Recognized as a LOW Signal
V _{CD}	Input Clamp Diode Voltage				-1.2	V	Min	$I_{IN} = -18 \text{ mA}$
V _{OH}	Output HIGH Voltage	54F 10% V _{CC} 54F 10% V _{CC} 74F 10% V _{CC} 74F 10% V _{CC} 74F 5% V _{CC} 74F 5% V _{CC}	2.5 2.4 2.5 2.4 2.7 2.7			V	Min	$\begin{split} I_{OH} &= -1 \text{ mA} \\ I_{OH} &= -3 \text{ mA} \\ I_{OH} &= -1 \text{ mA} \\ I_{OH} &= -3 \text{ mA} \\ I_{OH} &= -1 \text{ mA} \\ I_{OH} &= -3 \text{ mA} \end{split}$
V _{OL}	Output LOW Voltage	54F 10% V _{CC} 74F 10% V _{CC}			0.5 0.5	V	Min	$I_{OL} = 20 \text{ mA}$ $I_{OL} = 24 \text{ mA}$
I _{IH}	Input HIGH Current	54F 74F			20.0 5.0	μΑ	Max	V _{IN} = 2.7V
I _{BVI}	Input HIGH Current Breakdown Test	54F 74F			100 7.0	μΑ	Max	V _{IN} = 7.0V
I _{CEX}	Output HIGH Leakage Current	54F 74F			250 50	μΑ	Max	$V_{OUT} = V_{CC}$
V _{ID}	Input Leakage Test	74F	4.75			٧	0.0	$I_{\text{ID}} = 1.9 \mu\text{A}$ All Other Pins Grounded
I _{OD}	Output Leakage Circuit Current	74F			3.75	μΑ	0.0	V _{IOD} = 150 mV All Other Pins Grounded
I _{IL}	Input LOW Current				-0.6	mA	Max	$V_{IN} = 0.5V$
lozh	Output Leakage Current				50	μΑ	Max	$V_{OUT} = 2.7V$
lozL	Output Leakage Current				-50	μΑ	Max	V _{OUT} = 0.5V
los	Output Short-Circuit Current		-60		-150	mA	Max	V _{OUT} = 0V
I _{ZZ}	Bus Drainage Test				500	μΑ	0.0V	$V_{OUT} = V_{CC}$
Іссн	Power Supply Current			6.2	9.5	mA	Max	V _O = HIGH
I _{CCL}	Power Supply Current			15.1	23	mA	Max	$V_O = LOW$
lccz	Power Supply Current			11.3	17	mA	Max	V _O = HIGH Z

AC Electrical Characteristics 74F 54F 74F $T_{\hbox{\scriptsize A}}=\,+\,25^{\circ}\hbox{\scriptsize C}$ $\begin{aligned} \mathbf{T_A,V_{CC}} &= \mathbf{Mil} \\ \mathbf{C_L} &= \mathbf{50}\ \mathbf{pF} \end{aligned}$ $\begin{aligned} \textbf{T_A, V}_{\text{CC}} &= \textbf{Com} \\ \textbf{C_L} &= \textbf{50 pF} \end{aligned}$ $V_{CC} = +5.0V$ $C_L = 50 \text{ pF}$ Symbol Units **Parameter** Min Тур Max Min Max Min Max 5.3 6.0 Propagation Delay 2.5 2.0 7.5 2.0 t_{PLH} ns t_{PHL} I_n to \overline{Z}_n 1.0 4.0 1.0 6.0 1.0 5.0 7.5 9.5 8.5 Propagation Delay 3.0 3.0 3.0 t_{PLH} ns $S \text{ to } \overline{Z}_n$ 9.0 8.0 2.5 7.0 2.5 2.5 t_{PHL} Output Enable Time 2.0 6.0 2.0 8.0 2.0 7.0 t_{PZH} t_{PZL} 2.5 7.0 2.5 9.0 2.5 8.0 ns

6.0

6.0

Output Disable Time

 t_{PHZ}

 t_{PLZ}

2.0

2.0

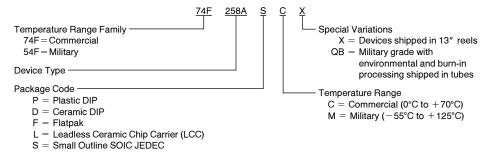
1.5

2.0

7.0

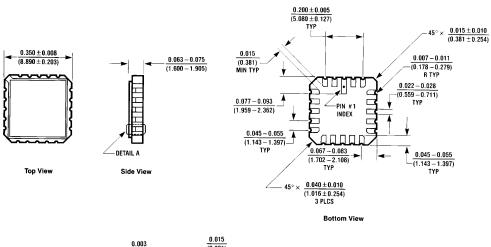
8.5

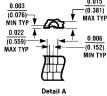
2.0

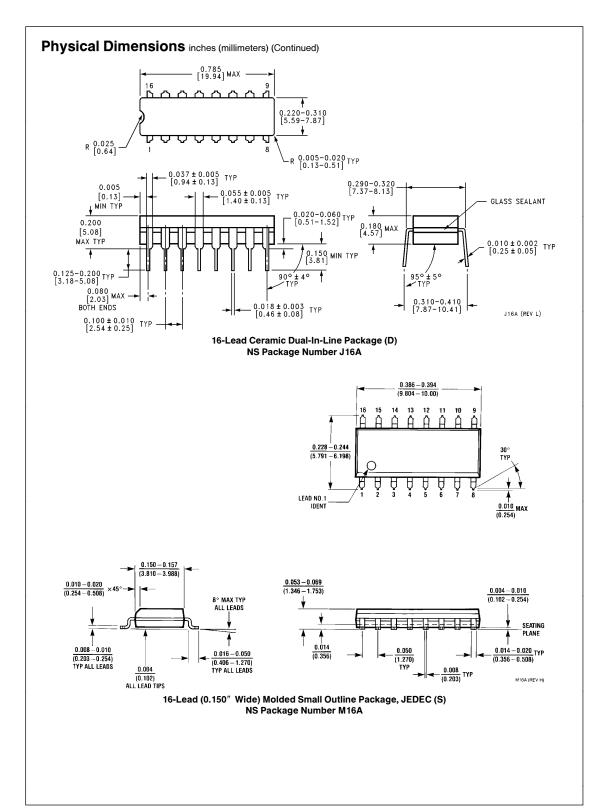

2.0

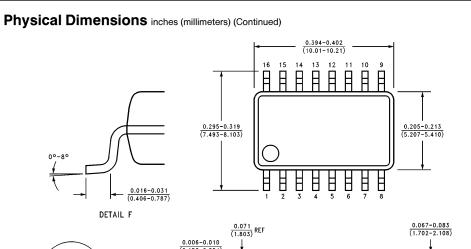
7.0

7.0


Ordering Information

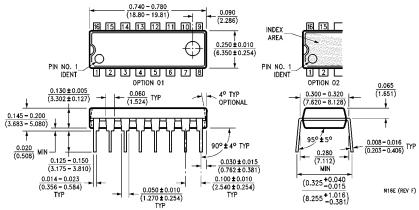

The device number is used to form part of a simplified purchasing code where the package type and temperature range are defined as follows:


Physical Dimensions inches (millimeters)


SJ = Small Outline SOIC EIAJ

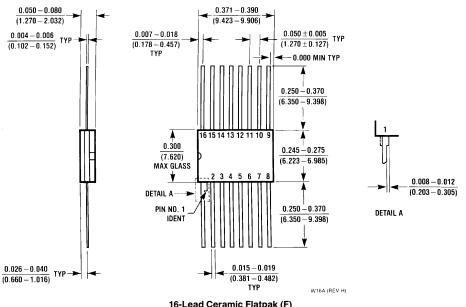
20-Lead Ceramic Leadless Chip Carrier (L) NS Package Number E20A E20A (REV D)

0.006-0.010 (0.152-0.254)


SEE DETAIL F

0.049 (1.245) REF

0.050 (1.270)
0.000-0.010 (0.000-0.010 (0.000-0.254)
0.014-0.020 (0.356-0.508)


16-Lead (0.300" Wide) Molded Small Outline Package, EIAJ (SJ)

NS Package Number M16D

16-Lead (0.300" Wide) Molded Dual-In-Line Package (P) NS Package Number N16E

Physical Dimensions inches (millimeters) (Continued)

16-Lead Ceramic Flatpak (F) NS Package Number W16A

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 2900 Semiconductor Drive P.O. Box 58090 Santa Clara, CA 95052-8090 Tel: 1(800) 272-9959 TWX: (910) 339-9240 National Semiconductor GmbH Livry-Gargan-Str. 10 D-82256 Fürstenfeldbruck Germany Tel: (81-41) 35-0 Telex: 527649 Fax: (81-41) 35-1

Japan Ltd.
Sumitomo Chemical
Engineering Center
Bldg. 7F
1-7-1, Nakase, Mihama-Ku
Chiba-City,
Ciba Prefecture 261

National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon u Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960 National Semiconductores Do Brazil Ltda. Rue Deputado Lacorda Franco 120-3A Sao Paulo-SP Brazil 05418-000 Tel: (55-11) 212-5066 Telex: 391-1131931 NSBR BR Fax: (55-11) 212-1181 National Semiconductor (Australia) Pty, Ltd. Building 16 Business Park Drive Monash Business Park Nottinghill, Melbourne Victoria 3168 Australia Tel: (3) 558-9999 Fax: (3) 558-9998