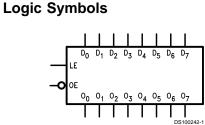
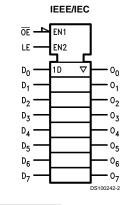

54ACQ573,54ACTQ573

54ACQ573 54ACTQ573 Quiet Series Octal Latch with TRI-STATE Outputs

Literature Number: SNOS063

54ACQ573 • 54ACTQ573 Quiet Series Octal Latch with TRI-STATE® Outputs


General Description

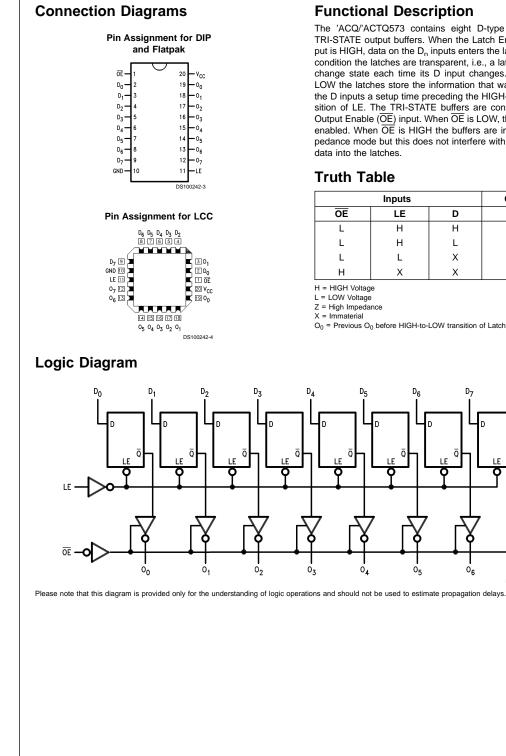

The 'ACQ/'ACTQ573 is a high-speed octal latch with buffered common Latch Enable (LE) and buffered common Output Enable (OE) inputs. The 'ACQ/'ACTQ573 is functionally identical to the 'ACQ/'ACTQ373 but with inputs and outputs on opposite sides of the package. The 'ACQ/'ACTQ utilizes NSC Quiet Series technology to guarantee quiet output switching and improved dynamic threshold performance. FACT Quiet Series™ features GTOTM output control and undershoot corrector in addition to a split ground bus for superior performance.

- Guaranteed simultaneous switching noise level and dynamic threshold performance
- Improved latch-up immunity
- Inputs and outputs on opposite sides of package allow easy interface with microprocessors
- Outputs source/sink 24 mA
- Faster prop delays than standard 'ACT573
- 4 kV minimum ESD immunity
- Standard Microcircuit Drawing (SMD)
 'ACTQ573: 5962-92194
 'ACQ573: 5962-92180

Features

■ I_{CC} and I_{OZ} reduced by 50%

Pin Names	Description
D ₀ -D ₇	Data Inputs
LE	Latch Enable Input
OE	TRI-STATE Output Enable Input
O ₀ -O ₇	TRI-STATE Latch Outputs


 $\label{eq:GTO} GTO^{IV} is a trademark of National Semiconductor Corporation. \\ TRI-STATE® is a registered trademark of National Semiconductor Corporation. \\ FACT® is a registered trademark of Fairchild Semiconductor Corporation. \\ FACT Quiet Series^{IV} is a trademark of Fairchild Semiconductor Corporation. \\$

© 1998 National Semiconductor Corporation DS100242

www.national.com

54ACQ573 • 54ACTQ573 Quiet Series Octal Latch with TRI-STATE Outputs

August 1998

The 'ACQ/'ACTQ573 contains eight D-type latches with TRI-STATE output buffers. When the Latch Enable (LE) input is HIGH, data on the D_n inputs enters the latches. In this condition the latches are transparent, i.e., a latch output will change state each time its D input changes. When LE is LOW the latches store the information that was present on the D inputs a setup time preceding the HIGH-to-LOW tran-sition of LE. The TRI-STATE buffers are controlled by the Output Enable (\overline{OE}) input. When \overline{OE} is LOW, the buffers are enabled. When \overline{OE} is HIGH the buffers are in the high impedance mode but this does not interfere with entering new

	Inputs		Outputs
OE	LE	D	O _n
L	н	Н	Н
L	н	L	L
L	L	X	Oo
н	x	x	Z

O₀ = Previous O₀ before HIGH-to-LOW transition of Latch Enable

0₇

DS100242-5

•

Absolute Maximum Ratings (Note 2)

Supply Voltage (V_{CC})

 $V_I = V_{CC} + 0.5V$ DC Input Voltage (V_I)

 $V_1 = -0.5V$

 $V_{O} = -0.5V$ $V_{\rm O} = V_{\rm CC} + 0.5 V$ DC Output Voltage (V_O)

DC Output Source or Sink Current (I_O) DC V_{CC} or Ground Current per Output Pin (I_{CC} or I_{GND})

DC Latchup Source or Sink Current

CDIP

DC Input Diode Current (IIK)

DC Output Diode Current (I_{OK})

Storage Temperature (T_{STG})

Junction Temperature (T_{J})

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specificatio

Recommended Operating Conditions

mend operation of FACT® circuits outside databook specifications.

cifications.	Supply Voltage (V _{CC})	
-0.5V to +7.0V	'ACQ	2.0V to 6.0V
0.00 10 17.00	'ACTQ	4.5V to 5.5V
–20 mA	Input Voltage (V _I)	0V to V_{CC}
+20 mA	Output Voltage (V _O)	0V to V_{CC}
-0.5V to V _{CC} + 0.5V	Operating Temperature (T _A)	
-0.5 10 V _{CC} + 0.5V	54ACQ/ACTQ	–55°C to +125°C
–20 mA	Minimum Input Edge Rate $\Delta V/\Delta t$	
-20 mA +20 mA	'ACQ Devices	
	$V_{\rm IN}$ from 30% to 70% of $V_{\rm CC}$	
-0.5V to V _{CC} + 0.5V	V _{CC} @ 3.0V, 4.5V, 5.5V	125 mV/ns
±50 mA	Minimum Input Edge Rate $\Delta V/\Delta t$	
THU DCT	'ACTQ Devices	
+50 m 4	V _{IN} from 0.8V to 2.0V	
±50 mA	V _{CC} @ 4.5V, 5.5V	125 mV/ns
–65°C to +150°C	Note 1: All commercial packaging is not recom quiring greater than 2000 temperature cycles fr	
±300 mA	Note 2: Absolute maximum ratings are those vertice to the device may occur. The databook specification	tions should be met, without
175°C	exception, to ensure that the system design is re temperature, and output/input loading variables	

DC Characteristics for 'ACQ Family Devices

		54ACQ				
Symbol	Parameter	V _{cc}	T _A = -55°C to +125°C	Units	Conditions	
		(V)	Guaranteed Limits	1		
V _{IH}	Minimum High Level	3.0	2.1		V _{OUT} = 0.1V	
	Input Voltage	4.5	3.15	V	or $V_{CC} - 0.1V$	
		5.5	3.85			
V _{IL}	Maximum Low Level	3.0	0.9		V _{OUT} = 0.1V	
	Input Voltage	4.5	1.35	V	or $V_{CC} - 0.1V$	
		5.5	1.65			
V _{он}	Minimum High Level	3.0	2.9		Ι _{ουτ} = –50 μΑ	
	Output Voltage	4.5	4.4	V		
		5.5	5.4			
					(Note 3)	
					$V_{IN} = V_{IL} \text{ or } V_{IH}$	
		3.0	2.4		I _{OH} = -12 mA	
		4.5	3.7	V	I _{OH} = -24 mA	
		5.5	4.7		I _{OH} = -24 mA	
V _{OL}	Maximum Low Level	3.0	0.1		Ι _{ΟUT} = 50 μΑ	
	Output Voltage	4.5	0.1	V		
		5.5	0.1			
					(Note 3)	
					$V_{IN} = V_{IL} \text{ or } V_{IH}$	
		3.0	0.50		I _{OL} = 12 mA	
		4.5	0.50	V	I _{OL} = 24 mA	
		5.5	0.50		I _{OL} = 24 mA	
I _{IN}	Maximum Input	5.5	±1.0	μΑ	$V_{I} = V_{CC}, GND$	
	Leakage Current				(Note 5)	

			54ACQ		
Symbol	Parameter	V _{cc}	T _A = -55°C to +125°C	Units	Conditions
		(V)	Guaranteed Limits		
I _{OLD}	(Note 4) Minimum Dynamic	5.5	50	mA	V_{OLD} = 1.65 V_{Max}
I _{OHD}	Output Current	5.5	-50	mA	V _{OHD} = 3.85 V _{Min}
I _{cc}	Maximum Quiescent	5.5	80.0	μA	$V_{IN} = V_{CC}$
	Supply Current				or GND (Note 5)
oz	Maximum TRI-STATE				$V_{I}(OE) = V_{IL}, V_{IH}$
	Leakage Current	5.5	±5.0	μA	$V_{I} = V_{CC}, GND$
					$V_{O} = V_{CC}, GND$
/ _{OLP}	Quiet Output	5.0	1.75	V	
	Maximum Dynamic V _{OL}				(Notes 6, 7)
V _{OLV}	Quiet Output	5.0	-1.2	V	
	Minimum Dynamic V _{OL}				(Notes 6, 7)

Note 3: All outputs loaded; thresholds on input associated with output under test.

Note 4: Maximum test duration 2.0 ms, one output loaded at a time.

Note 5: I_{IN} and I_{CC} @ 3.0V are guaranteed to be less than or equal to the respective limit @ 5.5V V_{CC}.

I_{CC} for 54ACQ @ 25°C is identical to 74ACQ @ 25°C.

Note 6: Plastic DIP package.

.

Note 7: Max number of outputs defined as (n). Data Inputs are driven 0V to 5V. One output @ GND.

DC Characteristics for 'ACTQ Family Devices

			54ACTQ		Conditions	
Symbol	Parameter	V _{cc}	T _A = -55°C to +125°C	Units		
		(V)	Guaranteed Limits	7		
V _{IH}	Minimum High Level	4.5	2.0	V	V _{OUT} = 0.1V	
	Input Voltage	5.5	2.0		or V _{CC} – 0.1V	
V _{IL}	Maximum Low Level	4.5	0.8	V	V _{OUT} = 0.1V	
	Input Voltage	5.5	0.8		or $V_{CC} - 0.1V$	
V _{он}	Minimum High Level	4.5	4.4	V	Ι _{ΟUT} = -50 μΑ	
	Output Voltage	5.5	5.4			
					(Note 8)	
					$V_{IN} = V_{IL} \text{ or } V_{IH}$	
		4.5	3.70	V	I _{он} = –24 mA	
		5.5	4.70		I _{он} = –24 mA	
/ _{ol}	Maximum Low Level	4.5	0.1	V	Ι _{ΟUT} = 50 μΑ	
	Output Voltage	5.5	0.1			
					(Note 8)	
					$V_{IN} = V_{IL} \text{ or } V_{IH}$	
		4.5	0.50	V	I _{OL} = 24 mA	
		5.5	0.50		I _{OL} = 24 mA	
IN	Maximum Input	5.5	±1.0	μA	$V_{I} = V_{CC}, GND$	
	Leakage Current					
oz	Maximum TRI-STATE	5.5	±5.0	μA	$V_{I} = V_{IL}, V_{IH}$	
	Leakage Current				$V_{O} = V_{CC}, GND$	
сст	Maximum	5.5	1.6	mA	$V_{I} = V_{CC} - 2.1V$	
	I _{CC} /Input					

www.national.com

DC C	DC Characteristics for 'ACTQ Family Devices (Continued)								
			54ACTQ						
Symbol	Parameter	V _{cc}	T _A = -55°C to +125°C	Units	Conditions				
		(V)	Guaranteed Limits]					
I _{OLD}	(Note 9)	5.5	50	mA	V _{OLD} = 1.65V Max				
	Minimum Dynamic								

	Willing Dynamic				
I _{OHD}	Output Current	5.5	-50	mA	V _{OHD} = 3.85V Min
I _{cc}	Maximum Quiescent	5.5	80.0	μA	$V_{IN} = V_{CC}$
	Supply Current				or GND (Note 10)
V _{OLP}	Quiet Output	5.0	1.5	V	(Notes 11, 12)
	Maximum Dynamic V _{OL}				
V _{OLV}	Quiet Output	5.0	-1.2	V	(Notes 11, 12)
	Minimum Dynamic V _{OL}				

Note 8: All outputs loaded; thresholds on input associated with output under test.

Note 9: Maximum test duration 2.0 ms, one output loaded at a time.

Note 10: I_{CC} for 54ACTQ @ 25°C is identical to 74ACTQ @ 25°C.

Note 11: Plastic DIP package.

Note 12: Max number of outputs defined as (n). Data Inputs are driven 0V to 3V. One output @ GND.

AC Electrical Characteristics

Symbol	Parameter	V _{cc} (V) (Note 13)	54ACQ T _A = -55°C to +125°C C _L = 50 pF		Units	Fig. No.
			Min	Max		
t _{PHL} ,	Propagation Delay	3.3	1.5	16.0	ns	
t _{PLH}	D _n to O _n	5.0	1.5	11.0		
t _{PLH} ,	Propagation Delay	3.3	1.5	15.0	ns	
t _{PHL}	LE to O _n	5.0	1.5	11.0		
t _{PZL} ,	Output Enable Time	3.3	1.5	13.5	ns	
t _{PZH}		5.0	1.5	10.0		
t _{PHZ} ,	Output Disable Time	3.3	1.5	13.0	ns	
t _{PLZ}		5.0	1.0	10.5		

Note 13: Voltage Range 5.0 is 5.0V ±0.5V

Voltage Range 3.3 is 3.3V ±0.3V

AC Operating Requirements

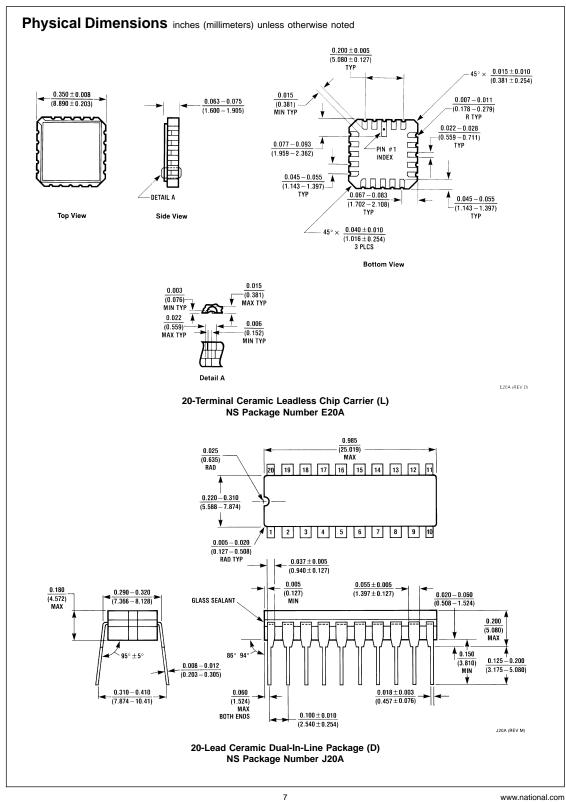
Symbol	Parameter	V _{cc} (V) (Note 14)	T _A = -55°C to +125°C C ₁ = 50 pF	Units
			Guaranteed Minimum	-
ts	Setup Time, HIGH or LOW	3.3	4.0	ns
	D _n to LE	5.0	4.0	
t _H	Hold Time, HIGH or LOW	3.3	2.0	ns
	D _n to LE	5.0	2.0	
t _{vv}	LE Pulse Width, HIGH	3.3	5.0	ns
		5.0	5.0	

www.national.com

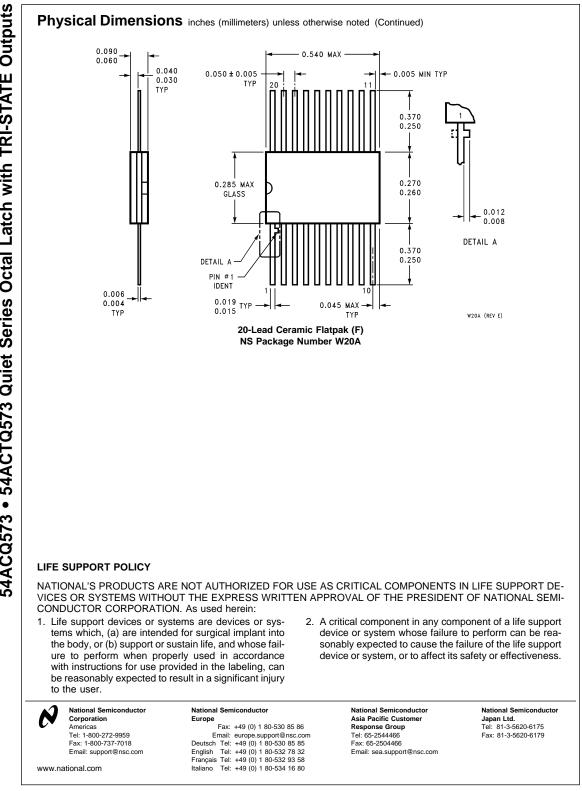
AC Electrical Characteristics									
Symbol	Parameter	V _{cc} (V) (Note 15)	T _A = to +2	54ACTQ T _A = -55°C to +125°C C _L = 50 pF	Units	Fig. No.			
			Min	Max					
t _{PHL} ,	Propagation Delay	5.0	1.5	10.0	ns				
t _{PLH}	D _n to O _n								
t _{PLH} ,	Propagation Delay	5.0	1.5	11.0	ns				
t _{PHL}	LE to O _n								
t _{PZL} , t _{PZH}	Output Enable Time	5.0	1.5	11.0	ns				
t _{PHZ} , t _{PLZ}	Output Disable Time	5.0	1.5	11.0	ns				

Note 15: Voltage Range 5.0 is 5.0V ±0.5V

· ·


AC Operating Requirements

Symbol	Parameter	V _{cc} (V) (Note 16)	$54ACTQ$ $T_{A} = -55°C$ to +125°C $C_{L} = 50 \text{ pF}$ Guaranteed Minimum	Units	Fig. No.
t _s	Setup Time, HIGH or LOW	5.0	3.5	ns	
	D _n to LE				
t _H	Hold Time, HIGH or LOW	5.0	1.5	ns	
	D _n to LE				
t _w	LE Pulse Width, HIGH	5.0	5.0	ns	


Note 16: Voltage Range 5.0 is 5.0V ±0.5V

Capacitance

Symbol	Parameter	Тур	Units	Conditions
C _{IN}	Input Capacitance	4.5	pF	V _{CC} = OPEN
C _{PD}	Power Dissipation	42.0	pF	$V_{CC} = 5.0V$
	Capacitance			

www.national.com

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Audio	www.ti.com/audio	Communications and Telecom	www.ti.com/communications
Amplifiers	amplifier.ti.com	Computers and Peripherals	www.ti.com/computers
Data Converters	dataconverter.ti.com	Consumer Electronics	www.ti.com/consumer-apps
DLP® Products	www.dlp.com	Energy and Lighting	www.ti.com/energy
DSP	dsp.ti.com	Industrial	www.ti.com/industrial
Clocks and Timers	www.ti.com/clocks	Medical	www.ti.com/medical
Interface	interface.ti.com	Security	www.ti.com/security
Logic	logic.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Power Mgmt	power.ti.com	Transportation and Automotive	www.ti.com/automotive
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Mobile Processors	www.ti.com/omap		
Wireless Connectivity	www.ti.com/wirelessconnectivity		
			a O a Al a a m

TI E2E Community Home Page

e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2011, Texas Instruments Incorporated