54ACTQ16374

54ACTQ16374 16-Bit D Flip-Flop with TRI-STATE Outputs

Literature Number: SNOS589

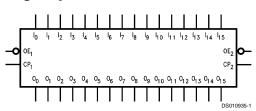
September 1998

54ACTQ16374 16-Bit D Flip-Flop with TRI-STATE Outputs

National Semiconductor

54ACTQ16374 16-Bit D Flip-Flop with TRI-STATE®Outputs

General Description


The 'ACTQ16374 contains sixteen non-inverting D flip-flops with TRI-STATE outputs and is intended for bus oriented applications. The device is byte controlled. A buffered clock (CP) and Output Enable (OE) are common to each byte and can be shorted together for full 16-bit operation.

The 'ACTQ16245 utilizes NSC Quiet Series technology to guarantee quiet output switching and improved dynamic threshold performance. FACT Quiet Series[®] features GTO[®] output control for superior performance.

FeaturesUtilizes NSC FACT Quiet Series technology

- Guaranteed simultaneous switching noise level and
- dynamic threshold performance
- Buffered Positive edge-triggered clock
- Separate control logic for each byte
- 16-bit version of the 'ACTQ374
 Outputs as used (sink 0.4 m)
- Outputs source/sink 24 mA
- Standard Microcircuit Drawing (SMD) 5962-9452801

Logic Symbol

Pin Description

Pin	Description
Names	5
OEn	Output Enable Input (Active Low)
CPn	Clock Pulse Input
I ₀ -I ₁₅	Inputs
O ₀ -O ₁₅	Outputs

Pin Assignment for CERPAK						
_						
0E1 -	1	48	- CP1			
°° –	2	47	— I ₀			
0 ₁ —	3	46	— կ			
GND —	4	45	- GND			
0 ₂ —	5	44	- I ₂			
0 ₃ —	6	43	- I ₃			
v _{cc} –	7	42	-v _{cc}			
0 ₄ —	8	41	- 1 ₄			
0 ₅ —	9	40	- 1 ₅			
GND -	10	39	- GND			
0 ₆ —	11	38	- 1 ₆			
07 -	12	37	- 1 ₇			
0 ₈ —	13	36	- 1 ₈			
0 ₉ —	14	35	- Ig			
GND -	15	34	- GND			
0 ₁₀ —	16	33	- 1 ₁₀			
0 ₁₁ —	17	32	- 41			
v _{cc} –	18	31	– v _{cc}			
0 ₁₂ —	19	30	- I ₁₂			
0 ₁₃ —	20	29	- 1 ₁₃			
GND —	21	28	- GND			
0 ₁₄ —	22	27	- 1 ₁₄			
0 ₁₅ —	23	26	- 1 ₁₅			
ΘĒ ₂ —	24	25	— СР ₂			
I	DS010935-2					

GTOTM is a trademark of National Semiconductor Corporation. TRI-STATE[®] is a registered trademark of National Semiconductor Corporation. FACTTM and FACT Quiet SemicsTM are trademarks of Fairchild Semiconductor Corporation.

www.national.com

© 1998 National Semiconductor Corporation DS010935

Functional Description

•

The 'ACTQ16374 consists of sixteen edge-triggered flip-flops with individual D-type inputs and TRI-STATE true outputs. The device is byte controlled with each byte functioning identically, but independent of the other. The control pins can be shorted together to obtain full 16-bit operation. Each byte has a buffered clock and buffered Output Enable common to all flip-flops within that byte. The description which follows applies to each byte. Each flip-flop will store the state of their individual D inputs that meet the setup and hold time requirements on the LOW-to-HIGH Clock (CP_n) transition. With the Output Enable (\overline{OE}_n) LOW, the contents of the flip-flops are available at the outputs. When \overline{OE}_n is HIGH, the outputs go to the high impedance state. Operation of the OE_n input does not affect the state of the flip-flops.

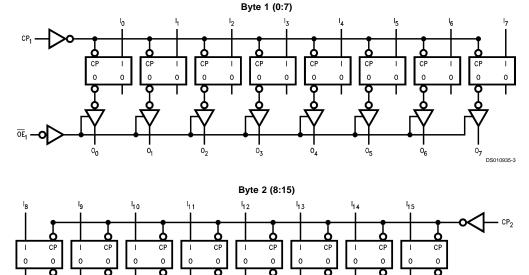
Truth Tables

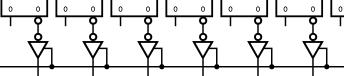
	Inputs		Outputs
CP1	OE₁	I ₀ –I ₇	0 ₀ –0 ₇
Ν	L	Н	Н
Ν	L	L	L
L	L	х	(Previous)
х		V	
^	Н	Х	Z
^	Inputs	Χ	2 Outputs
CP ₂		۸ ا ₈ –l ₁₅	_
	Inputs		Outputs
CP ₂	Inputs	I ₈ -I ₁₅	Outputs O ₈ –O ₁₅
CP ₂ N	Inputs	I ₈ -I ₁₅	Outputs O ₈ –O ₁₅

0E2

DS010935-4

0₁₅


H = High Voltage Level


L = Low Voltage Level

X = Immaterial Z = High Impedance

z – nign impedance

 $\begin{bmatrix} 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 0_9 & 0_{10} & 0_{11} & 0_{12} & 0_{13} & 0_{14} \end{bmatrix}$

www.national.com

Absolute Maximum Ratings (Note 1)

Supply Voltage (V_{CC})

 $V_I = V_{CC} + 0.5V$

 $V_{\rm O} = V_{\rm CC} + 0.5 V$

per Output Pin

CDIP

Junction Temperature

Storage Temperature

DC Output Voltage (V_O)

DC V_{CC} or Ground Current

 $V_{I} = -0.5V$

 $V_{O} = -0.5V$

DC Input Diode Current (IIK)

DC Output Diode Current (I_{OK})

DC Output Source/Sink Current (I_O)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Recommend	ed Operating
Conditions	

cifications.	Supply Voltage (V _{CC})	
0.5 / to $1.7.0$ /	'ACTQ	4.5V to 5.5V
-0.5V to +7.0V	Input Voltage (V _I)	0V to V _{CC}
00 1	Output Voltage (V _O)	0V to V_{CC}
-20 mA	Operating Temperature (T _A):	
+20 mA	54ACTQ	–55°C to +125°C
20 m 4	Minimum Input Edge Rate (dV/dt)	
-20 mA	'ACTQ Devices	125 mV/ns
+20 mA	V _{IN} from 0.8V to 2.0V	
-0.5V to V _{CC} + 0.5V	V _{CC} @ 4.5V, 5.5V	
±50 mA	Note 1: Absolute maximum ratings are those val	ues beyond which damage

Note 1: Absolute maximum ratings are those values beyond which damage to the device may occur. The databook specifications should be met, without exception to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. National does not recommend operation of FACT™ circuits outside databook specifications.

DC Electrical Characteristics for 'ACTQ Family Devices

±50 mA

+175°C -65°C to +150°C

Symbol	Parameter	V _{cc}	54ACTQ	Units	Conditions
		(V)	T _A = -55°C	-	
			to +125°C		
			Guaranteed Limits	-	
VIH	Minimum High	4.5	2.0	V	V _{OUT} = 0.1V
	Input Voltage	5.5	2.0		or V _{CC} – 0.1V
V _{IL}	Maximum Low	4.5	0.8	V	V _{OUT} = 0.1V
	Input Voltage	5.5	0.8		or V _{CC} – 0.1V
V _{OH}	Minimum High	4.5	4.4	V	Ι _{ΟUT} = –50 μΑ
	Output Voltage	5.5	5.4		
					(Note 2)
					$V_{IN} = V_{IL} \text{ or } V_{IH}$
		4.5	3.70	V	I _{он} = –24 mA
		5.5	4.70		I _{он} = –24 mA
V _{OL}	Maximum Low	4.5	0.1	V	Ι _{ΟUT} = 50 μΑ
	Output Voltage	5.5	0.1		
					(Note 2)
					$V_{IN} = V_{IL} \text{ or } V_{IH}$
		4.5	0.50	V	I _{OL} = 24 mA
		5.5	0.50		I _{OL} = 24 mA
l _{oz}	Maximum TRI-STATE	5.5	±10.0	μA	$V_{I} = V_{IL}, V_{IH}$
	Leakage Current				$V_{O} = V_{CC}, GND$
I _{IN}	Maximum Input	5.5	±1.0	μΑ	$V_{I} = V_{CC}, GND$
	Leakage Current				
I _{CCT}	Maximum I _{CC} /Input	5.5	1.6	mA	$V_1 = V_{CC} - 2.1V$
I _{CC}	Max Quiescent	5.5	160.0	μΑ	$V_{IN} = V_{CC}$
	Supply Current				or GND (Note 6)
I _{old}	(Note 3) Minimum Dynamic	5.5	50	mA	V _{OLD} = 1.65V Max
I _{OHD}	Output Current		50	mA	V _{OHD} = 3.85V Min
V _{OLP}	Quiet Output	5.0	0.8	V	
	Maximum Dynamic V _{OL}				(Notes 4, 5)
V _{OLV}	Quiet Output	5.0	-0.8	V	
	Minimum Dynamic V _{OL}				(Notes 4, 5)

DC Electrical Characteristics for 'ACTQ Family Devices (Continued)

Note 2: All outputs loaded; thresholds associated with output under test.

•

Note 3: Maximum test duration 2.0 ms; one output loaded at a time.

Note 4: Maximum number of outputs that can switch simultaneously is n. (n - 1) outputs are switched LOW and one output held LOW.

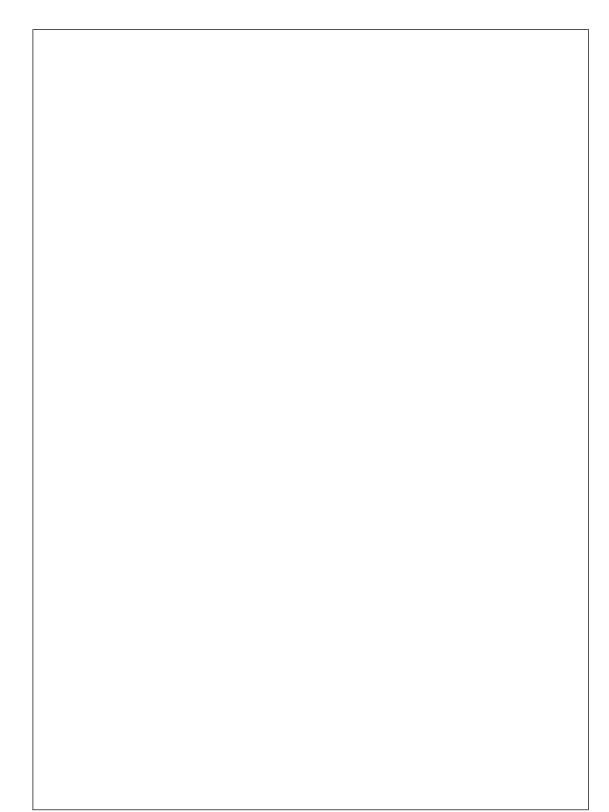
Note 5: Maximum number of outputs that can switch simultaneously is n. (n – 1) outputs are switched HIGH and one output held HIGH. Note 6: I_{CC} for 54ACTQ @ 25°C is identical to 74ACTQ @ 25°C.

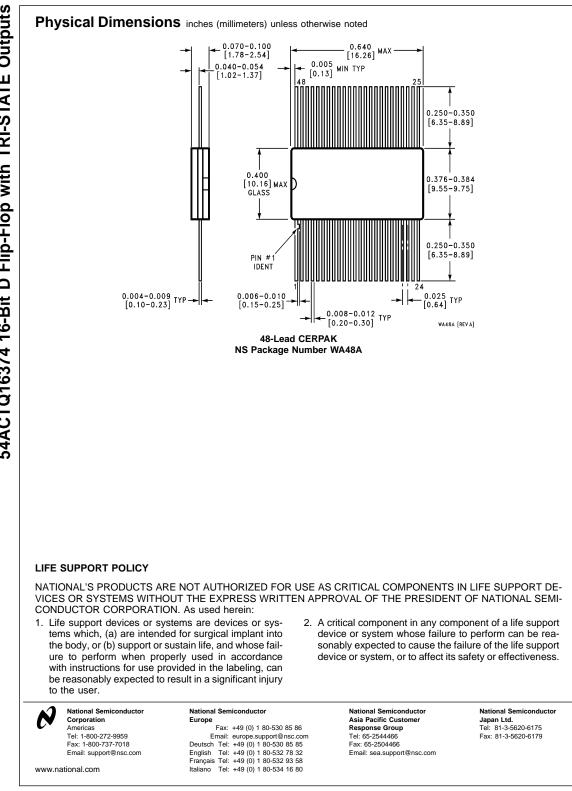
AC Electrical Characteristics

Symbol	Parameter	V _{cc}	54ACTQ		Units
		(V) (Note 7)	–55°C te	√ = o +125°C 50 pF	
			Min	Max	_
f _{max}	Maximum Clock	5.0	65		MHz
	Frequency				
t _{PLH} ,	Propagation Delay	5.0	3.0	10.5	ns
t _{PHL}	CP to O _n		3.0	10.5	
t _{PZH} ,	Output Enable Time	5.0	3.0	10.5	ns
t _{PZL}			3.0	11.5	
t _{PHZ} ,	Output Disable Time	5.0	2.0	9.0	ns
t _{PLZ}			2.0	9.0	

Note 7: Voltage Range 5.0 is 5.0V \pm 0.5V.

AC Operating Requirements


Symbol	Parameter	V _{cc}	54ACTQ	Units
		(V)	T _A =	
		(Note 8)	–55°C to +125°C	
			C _L = 50 pF	
			Guaranteed Limits	
t _s	Setup Time, HIGH or	5.0	3.0	ns
	LOW, Input to Clock			
t _H	Hold Time, High or	5.0	1.0	ns
	LOW, Input to Clock			
t _w	CP Pulse Width,	5.0	5.0	ns
	HIGH or LOW			


Note 8: Voltage Range 5.0 is 5.0V±0.5V.

Capacitance

Symbol	Parameter	Тур	Units	Conditions
CIN	Input Capacitance	4.5	pF	$V_{CC} = 5.0V$
C _{PD}	Power Dissipation	95	pF	$V_{\rm CC} = 5.0V$

www.national.com

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Audio	www.ti.com/audio	Communications and Telecom	www.ti.com/communications
Amplifiers	amplifier.ti.com	Computers and Peripherals	www.ti.com/computers
Data Converters	dataconverter.ti.com	Consumer Electronics	www.ti.com/consumer-apps
DLP® Products	www.dlp.com	Energy and Lighting	www.ti.com/energy
DSP	dsp.ti.com	Industrial	www.ti.com/industrial
Clocks and Timers	www.ti.com/clocks	Medical	www.ti.com/medical
Interface	interface.ti.com	Security	www.ti.com/security
Logic	logic.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Power Mgmt	power.ti.com	Transportation and Automotive	www.ti.com/automotive
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Mobile Processors	www.ti.com/omap		
Wireless Connectivity	www.ti.com/wirelessconnectivity		
		u Hama Dawa	a O a Al a a m

TI E2E Community Home Page

e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2011, Texas Instruments Incorporated