54AC/74AC899 • 54ACT/74ACT899

9-Bit Latchable Transceiver

 with Parity Generator/Checker
General Description

The 'AC/'ACT899 is a 9-bit to 9-bit parity transceiver with transparent latches. The device can operate as a feedthrough transceiver or it can generate/check parity from the 8 -bit data busses in either direction. The 'AC/'ACT899 features independent latch enables for the A-to-B direction and the B-to-A direction, a select pin for ODD/EVEN parity, and separate error signal output pins for checking parity.

Features

- Latchable transceiver with output sink of 24 mA
- Option to select generate parity and check or "feedthrough" data/parity in directions A-to-B or B-to-A
- Independent latch enable for A-to-B and B-to-A directions
- Select pin for ODD/EVEN parity
- ERRA and ERRB output pins for parity checking
- Ability to simultaneously generate and check parity
- May be used in system applications in place of the '534 and '280
- May be used in system applications in place of the '657 and '373 (no need to change $T / \overline{\mathrm{R}}$ to check parity)
- 4 kV minimum ESD immunity

Ordering Code: See Section 8

Logic Symbol

Connection Diagram

Pin Assignment for PCC
$A_{7} A_{6} A_{5} A_{4} A_{3} A_{2} A_{1}$
团 [io 9 回 [7] 6]

TL/F/10637-2

Pin Names	Description
$A_{0}-A_{7}$	A Bus Data Inputs/Data Outputs
$B_{0}-B_{7}$	B Bus Data Inputs/Data Outputs
APAR, BPAR	
ODD/EVEN	A and B Bus Parity Inputs
ODD/EVEN Parity Select, Active	
LOW for EVEN Parity	
GAB	Output Enables for A or B Bus, Active LOW
	Select Pin for Feed-Through or Generate Mode, LOW for Generate
LEA, LEB	Mode Latch Enables for A and B Latches, HIGH for Transparent Mode
ERRA, ERRB	
	Error Signals for Checking Generated Parity with Parity In, LOW if Error Occurs

Functional Description

The 'AC/'ACT899 has three principal modes of operation which are outlined below. These modes apply to both the A-to-B and B-to-A directions.

- Bus $A(B)$ communicates to Bus $B(A)$, parity is generated and passed on to the B (A) Bus as BPAR (APAR). If LEB (LEA) is HIGH and the Mode Select (SEL) is LOW, the parity generated from $B[0: 7](A[0: 7])$ can be checked and monitored by ERRB (ERRA).
- Bus $A(B)$ communicates to Bus $B(A)$ in a feed-through mode if SEL is HIGH. Parity is still generated and checked as ERRA and ERRB in the feed-through mode (can be used as an interrupt to signal a data/parity bit error to the CPU).
- Independent Latch Enables (LEA and LEB) allow other permutations of generating/checking (see Function Table below).

Function Table

| Inputs | | | | Operation | |
| :---: | :---: | :---: | :---: | :---: | :--- | :--- |
| GAB | GBA | SEL | LEA | LEB | |
| H | H | X | X | X | Busses A and B are TRI-STATE \oplus. |

H = HIGH Voltage Level
L = LOW Voltage Level
$X=$ Immaterial
Note 1: $O / \bar{E}=O D D / \overline{E V E N}$

Functional Block Diagram

AC Path

A_{n}, APAR $\rightarrow B_{n}$, BPAR
$\left(B_{n}\right.$, BPAR $\rightarrow A_{n}$, APAR $)$
FIGURE 1

AC Path (Continued)

$\left(B_{n} \rightarrow\right.$ APAR $)$
FIGURE 2

$O / \bar{E} \rightarrow \overline{E R R A}$
$\mathrm{O} / \mathrm{E} \rightarrow \mathrm{ERRB}$

FIGURE 4

AC Path (Continued)

FIGURE 5

FIGURE 7

```
AC Path (Continued)
```


TL/F/10637-12
$\overline{\text { SEL }} \rightarrow$ BPAR
$(\overline{S E L} \rightarrow$ APAR)

AC Path (Continued)

TS(H), TH(H)
LEA \rightarrow APAR, A[0:7] $($ LEB \rightarrow BPAR, $\mathrm{B}[0: 7])$

TL/F/10637-14

TL/F/10637-15

LEA \rightarrow APAR, A[0:7] $($ LEB \rightarrow BPAR, B[0:7])

FIGURE 11

FIGURE 12

FIGURE 13

Absolute Maximum Ratings (Note 1)	
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.	
Supply Voltage (V_{CC})	-0.5 V to +7.0 V
DC Input Diode Current (I_{1})	
$V_{1}=-0.5 \mathrm{~V}$	-20 mA
$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$	+ 20 mA
DC Input Voltage (V_{1})	-0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
DC Output Diode Current (IOK)	
$\mathrm{V}_{\mathrm{O}}=-0.5 \mathrm{~V}$	-20 mA
$V_{O}=V_{C C}+0.5 \mathrm{~V}$	+ 20 mA
DC Output Voltage (V_{O})	-0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
DC Output Source or Sink Current (lo)	$\pm 50 \mathrm{~mA}$
DC VCC or Ground Current per Output Pin (ICC or IGND)	$\pm 50 \mathrm{~mA}$
Storage Temperature (TSTG)	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
DC Latch-Up Source or Sink Current	$\pm 300 \mathrm{~mA}$
Junction Temperature (T_{J})	
CDIP	$175^{\circ} \mathrm{C}$
PDIP	$140^{\circ} \mathrm{C}$

Note 1: Absolute maximum ratings are those values beyond which damage to the device may occur. The databook specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. National does not recommend operation of FACTTM circuits outside databook specifications.

Recommended Operating Conditions
Supply Voltage (VCC)

'AC	2.0 V to 6.0 V
'ACT	4.5 V to 5.5 V
Input Voltage $\left(\mathrm{V}_{1}\right)$	0 V to V_{CC}
Output Voltage $\left(\mathrm{V}_{\mathrm{O}}\right)$	0 V to V_{CC}

Operating Temperature $\left(T_{A}\right)$

$74 \mathrm{AC} /$ ACT	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$54 \mathrm{AC} /$ ACT	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Minimum Input Edge Rate $\Delta V / \Delta t$
'AC Devices
$V_{\text {IN }}$ from 30% to 70% of $V_{C C}$ V_{CC} @ 3.0V, 4.5V, 5.5 V
$125 \mathrm{mV} / \mathrm{ns}$
Minimum Input Edge Rate $\Delta V / \Delta t$
'ACT Devices
$\mathrm{V}_{\text {IN }}$ from 0.8 V to 2.0 V
$V_{C C}$ @ $4.5 \mathrm{~V}, 5.5 \mathrm{~V}$

DC Electrical Characteristics for 'AC Family Devices

Symbol	Parameter	V_{Cc} (V)			54AC	74AC	Units	Conditions
			$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		$\begin{gathered} T_{A}= \\ -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} T_{A}= \\ -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{gathered}$		
			Typ	Guaranteed Limits				
$\mathrm{V}_{\text {IH }}$	Minimum High Level Input Voltage	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.5 \\ & 2.25 \\ & 2.75 \\ & \hline \end{aligned}$	$\begin{gathered} \hline 2.1 \\ 3.15 \\ 3.85 \\ \hline \end{gathered}$	$\begin{gathered} 2.1 \\ 3.15 \\ 3.85 \\ \hline \end{gathered}$	$\begin{gathered} \hline 2.1 \\ 3.15 \\ 3.85 \\ \hline \end{gathered}$	V	$\begin{aligned} & V_{\text {OUT }}=0.1 \mathrm{~V} \\ & \text { or } V_{C C}-0.1 \mathrm{~V} \end{aligned}$
$V_{\text {IL }}$	Maximum Low Level Input Voltage	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{gathered} 1.5 \\ 2.25 \\ 2.75 \\ \hline \end{gathered}$	$\begin{gathered} 0.9 \\ 1.35 \\ 1.65 \\ \hline \end{gathered}$	$\begin{gathered} \hline 0.9 \\ 1.35 \\ 1.65 \\ \hline \end{gathered}$	$\begin{gathered} \hline 0.9 \\ 1.35 \\ 1.65 \\ \hline \end{gathered}$	V	$\begin{aligned} & V_{\text {OUT }}=0.1 \mathrm{~V} \\ & \text { or } V_{C C}-0.1 \mathrm{~V} \end{aligned}$
V OH	Minimum High Level Output Voltage	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \\ & \hline \end{aligned}$	$\begin{array}{r} 2.99 \\ 4.49 \\ 5.49 \\ \hline \end{array}$	$\begin{array}{r} 2.9 \\ 4.4 \\ 5.4 \\ \hline \end{array}$	$\begin{aligned} & 2.9 \\ & 4.4 \\ & 5.4 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.9 \\ & 4.4 \\ & 5.4 \end{aligned}$	V	lout $=-50 \mu \mathrm{~A}$
		$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$		$\begin{aligned} & 2.56 \\ & 3.86 \\ & 4.86 \end{aligned}$	$\begin{aligned} & 2.4 \\ & 3.7 \\ & 4.7 \end{aligned}$	$\begin{aligned} & 2.46 \\ & 3.76 \\ & 4.76 \end{aligned}$	V	$\begin{aligned} { }^{*} V_{\text {IN }}= & V_{\text {IL }} \text { or } V_{\text {IH }} \\ & -12 \mathrm{~mA} \\ & -24 \mathrm{~mA} \\ \mathrm{I}_{\mathrm{OH}} & -24 \mathrm{~mA} \end{aligned}$
VOL	Maximum Low Level Output Voltage	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.002 \\ & 0.001 \\ & 0.001 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.1 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$	V	lout $=50 \mu \mathrm{~A}$
		$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$		$\begin{aligned} & 0.36 \\ & 0.36 \\ & 0.36 \end{aligned}$	$\begin{aligned} & 0.50 \\ & 0.50 \\ & 0.50 \end{aligned}$	$\begin{aligned} & 0.44 \\ & 0.44 \\ & 0.44 \end{aligned}$	V	$\begin{aligned} & { }^{*} V_{\text {IN }}=V_{\text {IL }} \text { or } V_{\text {IH }} \\ & 12 \mathrm{~mA} \\ & \\ & \text { IOL } \\ & 24 \mathrm{~mA} \\ & 24 \mathrm{~mA} \end{aligned}$
IN	Maximum Input Leakage Current	5.5		± 0.1	± 1.0	± 1.0	$\mu \mathrm{A}$	$\begin{aligned} & V_{1}=V_{C C} \text { GND } \\ & \text { (Note) } \end{aligned}$

-Maximum of 9 outputs loaded; thresholds on input associated with output under test.
\dagger Maximum test duration 2.0 ms , one output loaded at a time.

Symbol	Parameter	VCc (V)			54AC	74AC	Units	Conditions
			$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		$\begin{gathered} T_{A}= \\ -55^{\circ} C \text { to }+125^{\circ} C \end{gathered}$	$\begin{gathered} T_{A}= \\ -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{gathered}$		
			Typ	Guaranteed Limits				
IOLD	†Minimum Dynamic Output Current	5.5			50	75	mA	$\mathrm{V}_{\text {OLD }}=1.65 \mathrm{~V}$ Max
IOHD		5.5			-50	-75	mA	$\mathrm{V}_{\text {OHD }}=3.85 \mathrm{~V}$ Min
ICC	Maximum Quiescent Supply Current	5.5		8.0	160.0	80.0	$\mu \mathrm{A}$	$\begin{aligned} & V_{I N}=V_{C C} \\ & \text { or GND (Note) } \end{aligned}$
loz	Maximum TRI-STATE Leakage Current	5.5		± 0.5	± 10.0	± 5.0	$\mu \mathrm{A}$	$\begin{aligned} & V_{1}(O E)=V_{I L}, V_{I H} \\ & V_{1}=V_{C C}, G N D \\ & V_{O}=V_{C C}, G N D \end{aligned}$

-Maximum of 9 outputs loaded; thresholds on input associated with output under test.
tMaximum test duration 2.0 ms , one output loaded at a time.

DC Electrical Characteristics for 'ACT Family Devices

Symbol	Parameter	VCc (V)	74ACT		54ACT	74ACT	Units	Conditions
			$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		$\begin{gathered} T_{A}= \\ -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} T_{A}= \\ -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{gathered}$		
			Typ	Guaranteed Limits				
V_{IH}	Minimum High Level Input Voltage	$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \\ & \hline \end{aligned}$	V	$\begin{aligned} & V_{\text {OUT }}=0.1 \mathrm{~V} \\ & \text { or } V_{C C}-0.1 \mathrm{~V} \end{aligned}$
$\mathrm{V}_{\text {IL }}$	Maximum Low Level Input Voltage	$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 0.8 \\ & 0.8 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.8 \\ & 0.8 \end{aligned}$	$\begin{aligned} & 0.8 \\ & 0.8 \end{aligned}$	V	$\begin{aligned} & V_{\text {OUT }}=0.1 \mathrm{~V} \\ & \text { or } V_{C C}-0.1 \mathrm{~V} \end{aligned}$
V_{OH}	Minimum High Level Output Voltage	$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 4.49 \\ & 5.49 \end{aligned}$	$\begin{aligned} & 4.4 \\ & 5.4 \end{aligned}$	$\begin{aligned} & 4.4 \\ & 5.4 \end{aligned}$	$\begin{aligned} & 4.4 \\ & 5.4 \end{aligned}$	V	lout $=-50 \mu \mathrm{~A}$
		$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$		$\begin{aligned} & 3.86 \\ & 4.86 \end{aligned}$	$\begin{aligned} & 3.70 \\ & 4.70 \end{aligned}$	$\begin{aligned} & 3.76 \\ & 4.76 \end{aligned}$	V	$\begin{aligned} & { }^{*} \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{I}_{\mathrm{OH}} \\ & \\ & \\ & \\ & \\ & \hline \end{aligned} \mathbf{- 2 4 \mathrm { mA }} \mathrm{~mA} .$
V OL	Maximum Low Level Output Voltage	$\begin{array}{r} 4.5 \\ 5.5 \\ \hline \end{array}$	$\begin{aligned} & 0.001 \\ & 0.001 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \end{aligned}$	V	IOUT $=50 \mu \mathrm{~A}$
		$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$		$\begin{aligned} & 0.36 \\ & 0.36 \end{aligned}$	$\begin{aligned} & 0.50 \\ & 0.50 \end{aligned}$	$\begin{aligned} & 0.44 \\ & 0.44 \end{aligned}$	V	$\begin{array}{lr} V_{I N}=V_{I L} \text { or } V_{I H} \\ \mathrm{l}_{\mathrm{IL}} & 24 \mathrm{~mA} \\ 24 \mathrm{~mA} \end{array}$
I_{N}	Maximum Input Leakage Current	5.5		± 0.1	± 1.0	± 1.0	$\mu \mathrm{A}$	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{cc}}, \mathrm{GND}$
loz	Maximum TRI-STATE Leakage Current	5.5		± 0.5	± 10.0	± 5.0	$\mu \mathrm{A}$	$\begin{aligned} & V_{1}=V_{I L}, V_{I H} \\ & V_{\mathrm{O}}=V_{\mathrm{CC}}, G N D \end{aligned}$
ICCT	Maximum ICC/Input	5.5	0.6		1.6	1.5	mA	$V_{1}=V_{C C}-2.1 \mathrm{~V}$
IOLD	tMinimum Dynamic Output Current	5.5			50	75	mA	$\mathrm{V}_{\text {OLD }}=1.65 \mathrm{~V}$ Max
IOHD		5.5			-50	-75	mA	$\mathrm{V}_{\mathrm{OHD}}=3.85 \mathrm{~V}$ Min
ICC	Maximum Quiescent Supply Current	5.5		8.0	160.0	80.0	$\mu \mathrm{A}$	$\begin{aligned} & V_{\mathbb{I N}}=V_{C C} \\ & \text { or GND (Note) } \end{aligned}$

"Maximum of 9 outputs loaded; thresholds on input associated with output under test.
†Maximum test duration 2.0 ms , one output loaded at a time.
Note: ICC for 54 ACT © $25^{\circ} \mathrm{C}$ is identical to $\mathbf{7 4 A C T}$ © $25^{\circ} \mathrm{C}$.

AC Electrical Characteristics

Symbol	Parameter	$V_{C C}{ }^{*}$ (V)	74AC			54AC		74AC		Units	Fig. No.
			$\begin{gathered} T_{A}=+25^{\circ} \mathrm{C} \\ C_{L}=50 \mathrm{pF} \end{gathered}$			$\begin{gathered} T_{A}=-55^{\circ} \mathrm{C} \\ \text { to }+125^{\circ} \mathrm{C} \\ C_{L}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} T_{A}=-40^{\circ} \mathrm{C} \\ \text { to }+85^{\circ} \mathrm{C} \\ C_{L}=50 \mathrm{pF} \end{gathered}$			
			Min	Typ	Max	Min	Max	Min	Max		
$\begin{array}{r} \mathrm{t}_{\mathrm{PLH}} \\ \mathrm{t}_{\mathrm{PHL}} \\ \hline \end{array}$	Propagation Delay A_{n}, B_{n} to B_{n}, A_{n}	$\begin{aligned} & 3.3 \\ & 5.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.5 \\ & 1.5 \\ & \hline \end{aligned}$	$\begin{gathered} 12.0 \\ 7.0 \\ \hline \end{gathered}$	$\begin{aligned} & 15.0 \\ & 10.0 \\ & \hline \end{aligned}$			$\begin{array}{r} 2.5 \\ 1.5 \\ \hline \end{array}$	$\begin{aligned} & 15.5 \\ & 10.5 \\ & \hline \end{aligned}$	ns	1
$\begin{aligned} & \mathbf{t}_{\mathrm{PLH}} \\ & \mathbf{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay APAR, BPAR to BPAR, APAR	$\begin{aligned} & 3.3 \\ & 5.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.5 \\ & 1.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 9.5 \\ & 5.5 \\ & \hline \end{aligned}$	$\begin{array}{r} 12.0 \\ 8.0 \\ \hline \end{array}$			$\begin{aligned} & 2.5 \\ & 1.5 \\ & \hline \end{aligned}$	$\begin{array}{r} 12.5 \\ 8.5 \\ \hline \end{array}$	ns	1
$\begin{aligned} & t_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay A_{n}, B_{n} to BPAR, APAR	$\begin{aligned} & 3.3 \\ & 5.0 \\ & \hline \end{aligned}$	$\begin{array}{r} 3.0 \\ 2.0 \\ \hline \end{array}$	$\begin{gathered} 13.5 \\ 8.0 \\ \hline \end{gathered}$	$\begin{aligned} & 16.5 \\ & 11.0 \\ & \hline \end{aligned}$			$\begin{aligned} & 3.0 \\ & 2.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 17.0 \\ & 11.5 \end{aligned}$	ns	2
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay A_{n}, B_{n} to ERRA, ERRB	$\begin{aligned} & 3.3 \\ & 5.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.5 \\ & 1.5 \\ & \hline \end{aligned}$	$\begin{gathered} 12.5 \\ 7.5 \\ \hline \end{gathered}$	$\begin{aligned} & 15.5 \\ & 10.5 \\ & \hline \end{aligned}$			$\begin{aligned} & 2.5 \\ & 1.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 16.5 \\ & 11.0 \\ & \hline \end{aligned}$	ns	3
$\begin{aligned} & t_{\text {PLH }} \\ & t_{\mathrm{P} H \mathrm{~L}} \\ & \hline \end{aligned}$	Propagation Delay ODD/EVEN to ERRA, $\overline{E R R B}$	$\begin{aligned} & 3.3 \\ & 5.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.5 \\ & 1.5 \\ & \hline \end{aligned}$	$\begin{gathered} 12.5 \\ 7.5 \\ \hline \end{gathered}$	$\begin{aligned} & 15.5 \\ & 10.5 \\ & \hline \end{aligned}$			$\begin{aligned} & 2.5 \\ & 1.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 16.5 \\ & 11.0 \\ & \hline \end{aligned}$	ns	4
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay ODD/EVEN to APAR, BPAR	$\begin{aligned} & 3.3 \\ & 5.0 \\ & \hline \end{aligned}$	$\begin{array}{r} 3.0 \\ 2.0 \\ \hline \end{array}$	$\begin{gathered} 12.5 \\ 7.5 \\ \hline \end{gathered}$	$\begin{array}{r} 15.5 \\ 10.5 \\ \hline \end{array}$			$\begin{aligned} & 3.0 \\ & 2.0 \\ & \hline \end{aligned}$	$\begin{array}{r} 16.5 \\ 11.0 \\ \hline \end{array}$	ns	5
$\begin{aligned} & t_{\mathrm{PLH}} \\ & t_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay APAR, BPAR to ERRA, ERRB	$\begin{aligned} & 3.3 \\ & 5.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.0 \\ & 1.5 \\ & \hline \end{aligned}$	$\begin{gathered} 12.5 \\ 7.5 \\ \hline \end{gathered}$	$\begin{array}{r} 15.5 \\ 10.5 \\ \hline \end{array}$			$\begin{array}{r} 2.0 \\ 1.5 \\ \hline \end{array}$	$\begin{array}{r} 16.5 \\ 11.0 \\ \hline \end{array}$	ns	6
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay SEL to APAR, BPAR	$\begin{aligned} & 3.3 \\ & 5.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.0 \\ & 1.5 \\ & \hline \end{aligned}$	$\begin{gathered} 10.0 \\ 6.0 \\ \hline \end{gathered}$	$\begin{gathered} 12.5 \\ 8.5 \end{gathered}$			$\begin{aligned} & 2.0 \\ & 1.5 \\ & \hline \end{aligned}$	$\begin{gathered} 13.5 \\ 9.0 \\ \hline \end{gathered}$	ns	9
$\begin{array}{r} \mathrm{t}_{\mathrm{PLH}} \\ \mathrm{t}_{\mathrm{PHL}} \\ \hline \end{array}$	Propagation Delay LEB, LEA to A_{n}, B_{n}	$\begin{aligned} & 3.3 \\ & 5.0 \\ & \hline \end{aligned}$	$\begin{array}{r} 4.0 \\ 2.5 \\ \hline \end{array}$	$\begin{gathered} 12.0 \\ 7.0 \\ \hline \end{gathered}$	$\begin{array}{r} 15.5 \\ 10.5 \\ \hline \end{array}$			$\begin{array}{r} 4.0 \\ 2.5 \\ \hline \end{array}$	$\begin{array}{r} 16.5 \\ 11.0 \\ \hline \end{array}$	ns	10, 11
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay LEB, LEA to APAR, BPAR	$\begin{aligned} & 3.3 \\ & 5.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.0 \\ & 2.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 13.5 \\ & 8.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 17.0 \\ & 11.5 \\ & \hline \end{aligned}$			$\begin{aligned} & 3.0 \\ & 2.0 \\ & \hline \end{aligned}$	$\begin{array}{r} 18.0 \\ 12.0 \\ \hline \end{array}$	ns	10, 11
$t_{\text {PLH }}$ ${ }^{\text {tpHL }}$	Propagation Delay LEB, LEA to ERRA, ERRB	$\begin{aligned} & 3.3 \\ & 5.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.0 \\ & 2.5 \\ & \hline \end{aligned}$	$\begin{gathered} 13.5 \\ 8.0 \\ \hline \end{gathered}$	$\begin{array}{r} 17.0 \\ 11.5 \\ \hline \end{array}$			$\begin{array}{r} 4.0 \\ 2.5 \\ \hline \end{array}$	$\begin{array}{r} 18.0 \\ 12.0 \\ \hline \end{array}$	ns	12
$\begin{aligned} & \mathrm{t}_{\mathrm{pZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \\ & \hline \end{aligned}$	Output Enable Time $\overline{G B A}, \overline{G A B}$ to A_{n}, B_{n}	$\begin{aligned} & 3.3 \\ & 5.0 \\ & \hline \end{aligned}$		$\begin{gathered} 12.5 \\ 7.5 \\ \hline \end{gathered}$	$\begin{aligned} & 15.5 \\ & 10.5 \end{aligned}$			$\begin{aligned} & 3.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 16.5 \\ & 11.0 \end{aligned}$	ns	7, 8
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \\ & \hline \end{aligned}$	Output Enable Time $\overline{\mathrm{GBA}}, \overline{\mathrm{GAB}}$ to APAR, BPAR	$\begin{aligned} & 3.3 \\ & 5.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.5 \\ & 1.5 \\ & \hline \end{aligned}$	$\begin{gathered} 10.5 \\ 6.0 \\ \hline \end{gathered}$	$\begin{gathered} 13.5 \\ 9.0 \\ \hline \end{gathered}$			$\begin{aligned} & 2.5 \\ & 1.5 \\ & \hline \end{aligned}$	$\begin{gathered} 14.0 \\ 9.5 \\ \hline \end{gathered}$	ns	7,8
$\begin{aligned} & t_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLL}} \\ & \hline \end{aligned}$	Output Disable Time $\overline{\mathrm{GBA}}, \overline{\mathrm{GAB}}$ to $\mathrm{A}_{\mathrm{n}}, \mathrm{B}_{\mathrm{n}}$	$\begin{aligned} & 3.3 \\ & 5.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.0 \\ & \hline \end{aligned}$	$\begin{gathered} 11.0 \\ 6.5 \\ \hline \end{gathered}$	$\begin{gathered} 14.0 \\ 9.5 \\ \hline \end{gathered}$			$\begin{aligned} & 1.5 \\ & 1.0 \\ & \hline \end{aligned}$	$\begin{gathered} 14.0 \\ 9.5 \\ \hline \end{gathered}$	ns	7, 8
$\begin{array}{r} \mathrm{t}_{\mathrm{PHZ}} \\ \mathrm{t}_{\mathrm{PHL}} \\ \hline \end{array}$	Output Disable Time $\overline{\mathrm{GBA}}, \overline{\mathrm{GAB}}$ to APAR, BPAR	$\begin{aligned} & 3.3 \\ & 5.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.0 \\ & \hline \end{aligned}$	$\begin{array}{r} 11.0 \\ 6.5 \\ \hline \end{array}$	$\begin{gathered} 14.0 \\ 9.5 \\ \hline \end{gathered}$			$\begin{aligned} & 1.5 \\ & 1.0 \\ & \hline \end{aligned}$	$\begin{gathered} 14.0 \\ 9.5 \\ \hline \end{gathered}$	ns	7,8

[^0]| Symbol | Parameter | $\begin{gathered} v_{c c}{ }^{*} \\ (V) \end{gathered}$ | 74ACT | 54ACT | 74ACT | Units | Fig. No. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | $\begin{aligned} & T_{A}=+25^{\circ} \mathrm{C} \\ & C_{L}=50 \mathrm{pF} \end{aligned}$ | $\begin{gathered} T_{A}=-55^{\circ} \mathrm{C} \\ \text { to }+125^{\circ} \mathrm{C} \\ C_{L}=50 \mathrm{pF} \\ \hline \end{gathered}$ | $\begin{gathered} T_{A}=-40^{\circ} \mathrm{C} \\ \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \hline \end{gathered}$ | | |
| | | | Guaranteed Minimum | | | | |
| t_{s} | Setup Time, HIGH or LOW A_{n}, B_{n}, PAR to LEA, LEB | $\begin{aligned} & 3.3 \\ & 5.0 \end{aligned}$ | $\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$ | | $\begin{aligned} & 3.0 \\ & 3.0 \\ & \hline \end{aligned}$ | ns | 11, 12 |
| $t_{\text {h }}$ | Hold Time, HIGH or LOW A_{n}, B_{n}, PAR to LEA, LEB | $\begin{aligned} & \hline 3.3 \\ & 5.0 \\ & \hline \end{aligned}$ | $\begin{aligned} & 2.0 \\ & 1.5 \\ & \hline \end{aligned}$ | | $\begin{aligned} & 2.0 \\ & 1.5 \\ & \hline \end{aligned}$ | ns | 11, 12 |
| t_{w} | Pulse Width for LEA, LEB | $\begin{aligned} & 3.3 \\ & 5.0 \end{aligned}$ | $\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$ | | $\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$ | ns | 13 |

- Voltage Range 5.0 is $5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$.

Voltage Range 3.3 is $3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$.

AC Electrical Characteristics

Symbol	Parameter	VCC* (V)	74ACT			54ACT		74ACT		Units	Fig. No.
			$\begin{aligned} T_{A} & =+25^{\circ} \mathrm{C} \\ C_{L} & =50 \mathrm{pF} \end{aligned}$			$\begin{gathered} T_{A}=-55^{\circ} \mathrm{C} \\ \text { to }+125^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} T_{A}=-40^{\circ} \mathrm{C} \\ \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$			
			Min	Typ	Max	Min	Max	Min	Max		
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathbf{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay A_{n}, B_{n} to B_{n}, A_{n}	5.0	2.5	7.5	11.5			2.5	12.0	ns	1
$t_{\text {PLH }}$ t_{PHL}	Propagation Delay APAR, BPAR to BPAR , APAR	5.0	1.5	6.0	8.5			1.5	9.0	ns	1
$t_{\text {PLH }}$ t_{PHL}	Propagation Delay A_{n}, B_{n} to BPAR, APAR	5.0	2.5	8.5	12.0			2.5	12.5	ns	2
$\begin{aligned} & t_{\mathrm{PLH}} \\ & t_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay A_{n}, B_{n} to ERRA, ERRB	5.0	2.0	8.0	11.5			2.0	12.0	ns	3
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay ODD/EVEN to ERRA, ERRB	5.0	2.0	8.0	11.5			2.0	12.0	ns	4
$t_{\text {PLH }}$ ${ }^{\text {t }}{ }^{\text {PHL }}$	Propagation Delay ODD/EVEN to APAR, BPAR	5.0	2.5	8.0	11.5			2.5	12.0	ns	5
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation Delay APAR, BPAR to ERRA, $\overline{E R R B}$	5.0	1.5	7.5	10.5			1.5	11.5	ns	6
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay SEL to APAR, BPAR	5.0	1.5	6.5	9.0			1.5	9.5	ns	9
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation Delay LEB to A_{n}, B_{n}	5.0	2.5	7.0	10.5			2.5	11.0	ns	10,11
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay LEA to APAR, BPAR	5.0	2.0	8.0	11.5			2.0	12.0	ns	10,11
$t_{\text {PLH }}$ ${ }^{\text {tphL }}$	Propagation Delay LEA, LEB to ERRA, ERRB	5.0	2.5	8.0	11.5			2.5	12.0	ns	12
$\begin{aligned} & \mathbf{t}_{\mathrm{PZH}} \\ & \mathbf{t}_{\mathrm{PZL}} \\ & \hline \end{aligned}$	Output Enable Time $\overline{\mathrm{GBA}}$ or $\overline{\mathrm{GAB}}$ to A_{n}, B_{n}	5.0	2.5	7.0	10.5			2.5	11.0	ns	7, 8
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \end{aligned}$	Output Enable Time $\overline{\text { GBA }}$ or $\overline{\mathrm{GAB}}$ to BPAR or APAR	5.0	1.5	6.0	9.0			1.5	9.5	ns	7,8
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Output Disable Time $\overline{G B A}$ or $\overline{G A B}$ to A_{n}, B_{n}	5.0	1.5	6.5	9.5			1.5	9.5	ns	7,8
$\begin{aligned} & \text { tpHZ }^{2} \\ & \text { tpLZ }^{2} \end{aligned}$	Output Disable Time $\overline{\mathrm{GBA}}$ or $\overline{\mathrm{GAB}}$ to BPAR, APAR	5.0	1.5	6.5	9.5			1.5	9.5	ns	7,8

[^1]| AC Operating Requirements | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Symbol | Parameter | | $V_{c c}$ *
 (V) | 74ACT | | 54ACT | 74AC |
| | | | $\begin{aligned} \mathrm{T}_{\mathrm{A}} & =+25^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \end{aligned}$ | $\begin{gathered} T_{A}=-55^{\circ} \mathrm{C} \\ t 0+125^{\circ} \mathrm{C} \\ C_{L}=50 \mathrm{pF} \end{gathered}$ | $\begin{array}{r} T_{A}=-4 \\ \text { to }+85^{\circ} \\ C_{L}=50 \end{array}$ |
| | | | Guaranteed Minimum |
| t_{s} | Setup Time, HIGH or LOW A_{n}, B_{n}, PAR to LEA, LEB | | | 5.0 | 3.0 | | | 3.0 |
| t_{n} | Hold Time, HIGH or LOW A_{n}, B_{n}, PAR to LEA, LEB | | | 5.0 | 1.5 | | | 1.5 |
| t_{w} | Pulse Width for LEB, LEA | | 5.0 | 4.0 | | | 4.0 |
| ${ }^{\bullet}$ Voltage Range $5.0=5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$.
 Capacitance | | | | | | | |
| Symbol | | Parameter | | Typ | Units | Conditions | |
| C_{N} | | Input Capacitance | | 4.5 | pF | $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ | |
| C_{PD} | | Power Dissipation Capacitance | | 210 | pF | $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ | |

Capacitance

[^0]: -Voltage Range 5.0 is $5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$.
 Voltage Range 3.3 is $3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$.

[^1]: -Voltage Range 5.0 is $5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$.

