54ACT/74ACT399 Quad 2-Port Register

General Description

The 'ACT399 is the logical equivalent of a quad 2-input multiplexer feeding into four edge-triggered flip-flops. A common Select input determines which of the two 4-bit words is accepted. The selected data enters the flip-flop on the rising edge of the clock.

Features

- Select inputs from two data sources
- Fully positive edge-triggered operation
- Outputs source/sink 24 mA
- 'ACT399 has TTL-compatible inputs

Ordering Code: See Section 8

Logic Symbols

Connection Diagrams
Pin Assignment
for DIP, Flatpak and SOIC

TL/F/9789-3
Pin Assignment for LCC

Pin Names	Description
S	Common Select Input
$C P$	Clock Pulse Input
$I_{0 a}-I_{0 d}$	Data Inputs from Source 0
$I_{1 a}-I_{1 d}$	Data Inputs from Source 1
$Q_{a}-Q_{d}$	Register True Outputs

Functional Description

The 'АСТ399 is a high-speed quad 2-port register. It selects four bits of data from either of two sources (Ports) under control of a common Select input (S). The selected data is transferred to a 4-bit output register synchronous with the LOW-to-HIGH transition of the Clock input (CP). The 4-bit D-type output register is fully edge-triggered. The Data inputs ($l_{0 x}, l_{1 x}$) and Select input (S) must be stable only a setup time prior to and hold time after the LOW-to-HIGH transition of the Clock input for predictable operation.

Inputs				Outputs	
S	I_{0}	I_{1}	CP	Q	$\overline{\mathbf{Q}}$
L	L	X	\bigcirc	L	H
L	H	X	\checkmark	H	L
H	X	L	Ω	L	H
H	X	H	ρ	H	L

[^0]$\Omega=$ LOW-to-HIGH Clock Transition

Logic Diagram

TL/F/9789-4
Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage (VCC)

-0.5 V to +7.0 V
DC Input Diode Current ($I_{I K}$)

$$
\begin{array}{ll}
V_{1}=-0.5 V & -20 \mathrm{~mA} \\
V_{1}=V_{C C}+0.5 V & +20 \mathrm{~mA}
\end{array}
$$

DC Input Voltage (V_{1})
-0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
DC Output Diode Current (IOK)

$$
\begin{gathered}
\mathrm{V}_{\mathrm{O}}=-0.5 \mathrm{~V} \\
\mathrm{~V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V} \\
\mathrm{DC} \text { Output Voltage }\left(\mathrm{V}_{\mathrm{O}}\right)
\end{gathered}
$$

$$
-20 \mathrm{~mA}
$$

$$
+20 \mathrm{~mA}
$$

-0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
DC Output Source or Sink Current (IO)

$$
\pm 50 \mathrm{~mA}
$$

DC V $\mathrm{VCC}^{\text {or Ground Current }}$
per Output Pin (ICC or IGND) $\pm 50 \mathrm{~mA}$
Storage Temperature (TSTG)
Junction Temperature (T_{J})

CDIP	$+175^{\circ} \mathrm{C}$
PDIP	$+140^{\circ} \mathrm{C}$

Note 1: Absolute maximum ratings are those values beyond which damage to the device may occur. The databook specitications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. National does not recommend operation of FACTTM circuits outside databook specilications.

Recommended Operating Conditions

Supply Voltage (VCC) 'AC
2.0 V to 6.0 V
'ACT
Input Voltage (V_{1})
Output Voltage (VO)
Operating Temperature (T_{A})

$74 \mathrm{AC} /$ ACT	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$54 \mathrm{AC} /$ ACT	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Minimum Input Edge Rate ($\Delta \mathrm{V} / \Delta \mathrm{t}$)
'AC Devices
$\mathrm{V}_{\text {IN }}$ from 30% to 70% of V_{CC}
$V_{C C}$ @ 3.3V, 4.5V, 5.5V $125 \mathrm{mV} / \mathrm{ns}$
Minimum Input Edge Rate ($\Delta \mathrm{V} / \Delta t$)
'ACT Devices
$\mathrm{V}_{\text {IN }}$ from 0.8 V to 2.0 V
$V_{C C}$ @ 4.5V, $5.5 \mathrm{~V} \quad 125 \mathrm{mV} / \mathrm{ns}$

DC Electrical Characteristics for 'ACT Family Devices

Symbol	Parameter	$V_{C c}$ (V)	74ACT		54ACT	74ACT	Units	Conditions
			$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		$\begin{gathered} T_{A}= \\ -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} T_{A}= \\ -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \hline \end{gathered}$		
			Typ	Guaranteed Limits				
V_{IH}	Minimum High Level Input Voltage	$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	V	$\begin{aligned} & V_{\text {OUT }}=0.1 \mathrm{~V} \\ & \text { or } V_{C C}=0.1 V \end{aligned}$
$\mathrm{V}_{\text {IL }}$	Maximum Low Level Input Voltage	$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 0.8 \\ & 0.8 \end{aligned}$	$\begin{aligned} & 0.8 \\ & 0.8 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.8 \\ & 0.8 \end{aligned}$	V	$\begin{aligned} & V_{\text {OUT }}=0.1 \mathrm{~V} \\ & \text { or } V_{C C}-0.1 \mathrm{~V} \end{aligned}$
V_{OH}	Minimum High Level	$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 4.49 \\ & 5.49 \end{aligned}$	$\begin{aligned} & 4.4 \\ & 5.4 \end{aligned}$	$\begin{aligned} & 4.4 \\ & 5.4 \end{aligned}$	$\begin{aligned} & 4.4 \\ & 5.4 \end{aligned}$	V	lout $=-50 \mu \mathrm{~A}$
		$\begin{aligned} & 4.5 \\ & 5.5 \\ & \hline \end{aligned}$		$\begin{array}{r} 3.86 \\ 4.85 \\ \hline \end{array}$	$\begin{array}{r} 3.70 \\ 4.70 \\ \hline \end{array}$	$\begin{array}{r} 3.76 \\ 4.76 \\ \hline \end{array}$	V	$\begin{array}{ll} { }^{*} V_{I N}=V_{I L} \text { or } V_{I H} \\ \mathrm{l}_{\mathrm{OH}} & -24 \mathrm{~mA} \\ & -24 \mathrm{~mA} \end{array}$
V_{OL}	Maximum Low Level Output Voltage	$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 0.001 \\ & 0.001 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \end{aligned}$	V	lout $=50 \mu \mathrm{~A}$
		$\begin{aligned} & 4.5 \\ & 5.5 \\ & \hline \end{aligned}$		$\begin{aligned} & 0.36 \\ & 0.36 \end{aligned}$	$\begin{aligned} & 0.50 \\ & 0.50 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.44 \\ & 0.44 \end{aligned}$	V	$\begin{aligned} & { }^{{ }^{V} V_{I N}=V_{\text {IL }} \text { or } V_{\text {IH }}} \\ & \text { loL } \\ & 24 \mathrm{~mA} \\ & 24 \mathrm{~mA} \end{aligned}$
IN	Maximum Input Leakage Current	5.5		± 0.1	± 1.0	± 1.0	$\mu \mathrm{A}$	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}, \mathrm{GND}$
ICCT	Maximum ICC/Input	5.5	0.6		1.6	1.5	mA	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}-2.1 \mathrm{~V}$
IOLD	\dagger Minimum Dynamic Output Current	5.5			50	75	mA	$\mathrm{V}_{\text {OLD }}=1.65 \mathrm{~V} \mathrm{Max}$
IOHD		5.5			-50	-75	mA	$\mathrm{V}_{\mathrm{OHD}}=3.85 \mathrm{~V}$ Min
Icc	Maximum Quiescent Supply Current	5.5		8.0	160	80	$\mu \mathrm{A}$	$V_{I N}=V_{C C}$ or Ground

-All outputs loaded; thresholds on input associated with output under test.
tMaximum test duration 2.0 ms , one output loaded at a time.
Note: ICC for the 54ACT device is identical to the 74 ACT device at $25^{\circ} \mathrm{C}$.

AC Electrical Characteristics: See Section 2 for Waveforms

Symbol	Parameter	VCc* (V)	74ACT			54ACT		74ACT		Units	Fig. No.
			$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \end{aligned}$			$\begin{gathered} \mathrm{T}_{A}, V_{C C}=\mathrm{MiI} \\ C_{L}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} T_{A}, V_{C C}=C o m \\ C_{L}=50 \mathrm{pF} \end{gathered}$			
			Min	Typ	Max	Min	Max	Min	Max		
$\mathrm{f}_{\text {max }}$	Input Clock Frequency	5.0	165	160		90		160		MHz	
${ }_{\text {tPLH }}$	Propagation Delay CP to Q	5.0	1.5	7.0	8.0		10.0	1.5	8.5	ns	2-3, 4
${ }_{\text {tPHL }}$	Propagation Delay CP to Q	5.0	2.0	6.0	9.0		10.0	2.0	9.5	ns	2-3,4

${ }^{\bullet}$ Voltage Range 5.0 is $5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$
AC Operating Requirements: See Section 2 for Waveforms

Symbol	Parameter	$\mathrm{V}_{\mathrm{Cc}}{ }^{*}$ (V)	74ACT		54ACT	74ACT	Units	Fig. No.
			$\begin{aligned} & T_{A}=+25^{\circ} \mathrm{C} \\ & C_{L}=50 \mathrm{pF} \end{aligned}$		$\begin{gathered} T_{A}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ C_{L}=50 \mathrm{pF} \end{gathered}$	$\begin{gathered} T_{A}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ C_{L}=50 \mathrm{pF} \end{gathered}$		
			Typ	Guaranteed Minimum				
${ }^{\text {t }}$	Setup Time, HIGH or LOW I_{n} to CP	5.0	3.0	2.5	3.5	2.5	ns	2-7
t_{n}	Hold Time, HIGH or LOW In_{n} to CP	5.0	0	1.0	3.0	1.0	ns	2-7
t_{s}	Setup Time, HIGH or LOW S to CP	5.0	3.0	4.0	6.0	4.0	ns	2-7
t_{n}	Hold Time, HIGH or LOW S to CP	5.0	-1.0	0.5	2.5	0.5	ns	2-7
${ }^{\text {tw }}$	CP Pulse Width HIGH or LOW	5.0	5.5	3.5	5.0	3.5	ns	2-3

-Vollage Range 5.0 is $5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$

Capacitance

Symbol	Parameter	Typ	Units	Conditions
$\mathrm{C}_{I N}$	Input Capacitance	4.5	pF	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
C_{PD}	Power Dissipation Capacitance	30	pF	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

[^0]: $H=$ HIGH Voltage Level
 L = LOW Voltage Level
 $X=$ Immaterial

