54/7485
 54LS/74LS85 4-BIT MAGNITUDE COMPARATOR

DESCRIPTION - The '85 is a high speed, expandable 4-bit magnitude comparator which compares two 4-bit words in any monotonic code (binary, BCD or other) and generates three outputs: A less than B, A greater than B, and A equal to B. Three expansion inputs allow serial (ripple) expansion over any word length without external gates.

- EASILY EXPANDABLE
- BINARY OR BCD COMPARISON
- $A>B, A<B, A=B$ OUTPUTS AVAILABLE

ORDERING CODE: See Section 9

PKGS	$\begin{aligned} & \text { PIN } \\ & \text { OUT } \end{aligned}$	COMMERCIAL GRADE	MILITARY GRADE	PKG TYPE
		$\begin{aligned} & V_{C C}=+5.0 \mathrm{~V} \pm 5 \% \\ & T_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \text { VCC }=+5.0 \mathrm{~V} \pm 10 \% \\ & T_{A}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$	
Plastic DIP (P)	A	7485PC, 74LS85PC		9B
Ceramic DIP (D)	A	7485DC, 74LS85DC	5485DM, 54LS85DM	6B
Flatpak (F)	A	7485FC, 74LS85FC	5485FM, 54LS85FM	4L

LOGIC SYMBOL

Vcc $=\operatorname{Pin} 16$ GND $=\operatorname{Pin} 8$

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

PIN NAMES	DESCRIPTION	54/74 (U.L.) HIGH/LOW	54/74LS (U.L.) HIGH/LOW
$A_{0}-A_{3}$	Word A Inputs	3.0/3.0	1.5/0.75
$B_{0}-B_{3}$	Word B Inputs	3.0/3.0	1.5/0.75
$I_{A}=B$	$A=B$ Expansion Input	3.0/3.0	1.5/0.75
$I_{A}<B, I_{A}>{ }_{B}$	$A<B, A>B$ Expansion Inputs	1.0/1.0	0.5/0.25
$\mathrm{OA}_{\mathrm{A}}>\mathrm{B}$	A Greater Than B Output	10/10	$\begin{array}{r} 10 / 5.0 \\ (2.5) \end{array}$
$\mathrm{OA}_{\mathrm{A}}<\mathrm{B}$	A Less Than B Output	10/10	$\begin{array}{r} 10 / 5.0 \\ (2.5) \end{array}$
$\mathrm{O}_{\mathrm{A}}=\mathrm{B}$	A Equal B Output	10/10	$\begin{array}{r} 10 / 5.0 \\ (2.5) \end{array}$

FUNCTIONAL DESCRIPTION-The ' 85 compares two 4-bit words (A, B). Each word has four parallel inputs $\left(A_{0}-A_{3}, B_{0}-B_{3}\right)$ of which A_{3} and B_{3} are the most significant. Three expander inputs $\left(I_{A}>B, I_{A}<B, I_{A}=B\right)$ allow cascading without external gates. The three outputs ($O_{A}>B, O_{A}<B, O_{A}=B$) have only two gate delays from the expander inputs, thus reducing the delay time when units are cascaded for long words. The $l_{A}=B$ input to the least significant position must be held HIGH for proper compare operation. For serial (ripple) expansion, the $A>$ $B, A<B$ and $A=B$ outputs are connected respectively to the $I_{A}>B, I_{A}<B$, and $I_{A}=B$ inputs of the next most significant comparator.

LOGIC DIAGRAM

TRUTH TABLE

COMPARING INPUTS				CASCADING INPUUTS			OUTPUTS		
$\mathrm{A}_{3}, \mathrm{~B}_{3}$	A_{2}, B_{2}	$\mathrm{A}_{1}, \mathrm{~B}_{1}$	A_{0}, B_{0}	$I_{A}>{ }^{\text {P }}$	$I_{A}<{ }_{\text {B }}$	$I_{A}=B$	$\mathrm{O}_{A}>\mathrm{B}$	$\mathrm{O}_{\mathrm{A}}<\mathrm{B}$	$\mathrm{O}_{\mathrm{A}}=\mathrm{B}$
$A_{3}>B_{3}$	X	X	X	X	X	X	H	L	L
$A_{3}<B_{3}$	X	X	X	X	X	X	L	H	L
$A_{3}=B_{3}$	$\mathrm{A}_{2}>\mathrm{B}_{2}$	X	X	X	X	X	H	L	L
$A_{3}=B_{3}$	$A_{2}<B_{2}$	X	X	X	X	X	L	H	L
$A_{3}=B_{3}$	$\mathrm{A}_{2}=\mathrm{B}_{2}$	$A_{1}>B_{1}$	x	x	X	x	H	L	L
$A_{3}=B_{3}$	$A_{2}=B_{2}$	$A_{1}<B_{1}$	x	X	x	x	L	H	L
$A_{3}=B_{3}$	$A_{2}=B_{2}$	$A_{1}=B_{1}$	$A_{0}>B_{0}$	X	X	X	H	L	L
$A_{3}=B_{3}$	$A_{2}=B_{2}$	$A_{1}=B_{1}$	$A_{0}<B_{0}$	X	X	X	L	H	L
$A_{3}=B_{3}$	$A_{2}=B_{2}$	$A_{1}=B_{1}$	$A_{0}=B_{0}$	H	L	L	H	L	L
$A_{3}=B_{3}$	$A_{2}=B_{2}$	$A_{1}=B_{1}$	$A_{0}=B_{0}$	L	H	L	L	H	L
$A_{3}=B_{3}$	$A_{2}=B_{2}$	$A_{1}=B_{1}$	$A_{0}=B_{0}$	X	X	H	L	L	H
$A_{3}=B_{3}$	$A_{2}=B_{2}$	$A_{1}=B_{1}$	$A_{0}=B_{0}$	L	L	L	H	H	L
$A_{3}=B_{3}$	$\mathrm{A}_{2}=\mathrm{B}_{2}$	$A_{1}=B_{1}$	$A_{0}=B_{0}$	H	H	L	L	L	L

H = HIGH Voltage Level
L = LOW Voltage Level
$X=$ Immaterial
APPLICATIONS - Figure a shows a high speed method of comparing two 24-bit words with only two levels of device delay. With the technique shown in Figure b six levels of device delay result when comparing two 24-bit words. The parallel technique can be expanded to any number of bits, see Table I.

TABLE I

WORD LENGTH	NUMBER OF PKGS.
$1-4$ Bits	1
$5-24$ Bits	$2-6$
$25-120$ Bits	$8-31$

NOTE:
The 54LS/74LS85 can be used as a 5-bit comparator only when the outputs are used to drive the $A_{0}-A_{3}$ and $\mathrm{B}_{0}-\mathrm{B}_{3}$ inputs of another 54LS/74LS85 as shown in Figure 2 in positions \#1, 2, 3, and 4.

Fig. a Comparison of Two 24-Bit Words

$$
\begin{aligned}
& L=\text { Low Level } \\
& H=H I G H \text { Level }
\end{aligned}
$$

Fig. b Comparison of Two n-Bit Words

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

SYMBOL	PARAMETER		$54 / 74$		54/74LS		UNITS

AC CHARACTERISTICS: $\mathrm{VCC}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 3 for waveforms and load configurations)

SYMBOL	PARAMETER	54/74	54/74LS	UNITS	CONDITIONS
		$\begin{aligned} & C_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=400 \Omega \end{aligned}$	$C_{L}=15 \mathrm{pF}$		
		Min Max	Min Max		
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \\ & \hline \end{aligned}$	Propagation Delay A_{n} or B_{n} to $\mathrm{O}_{A}>B$ or $\mathrm{O}_{\mathrm{A}}<B$	$\begin{aligned} & 26 \\ & 30 \end{aligned}$	$\begin{aligned} & 36 \\ & 30 \end{aligned}$	ns	Figs. 3-1, 3-20
tPLH tPHL	Propagation Delay A_{n} or B_{n} to $\mathrm{O}_{\mathrm{A}}=\mathrm{B}$	$\begin{aligned} & 35 \\ & 30 \end{aligned}$	$\begin{aligned} & 45 \\ & 45 \end{aligned}$	ns	Figs. 3-1, 3-20
tPLH tPHL	Propagation Delay $A_{n} I_{x x}$ to $O_{A}>B$ or $O_{A}<B$	$\begin{aligned} & 11 \\ & 17 \end{aligned}$	$\begin{aligned} & 22 \\ & 17 \end{aligned}$	ns	Figs. 3-1, 3-4
$\overline{\text { tPLH }}$ tPHL	Propagation Delay $I_{A}=B \text { to } O_{A}=B$	$\begin{aligned} & 20 \\ & 17 \end{aligned}$	$\begin{aligned} & 22 \\ & 17 \end{aligned}$	ns	Figs. 3-1, 3-5

