54/7482 # 2-BIT FULL ADDER CONNECTION DIAGRAM PINOUT A **DESCRIPTION**—The '82 is a full adder which performs the addition of two 2-bit binary numbers. The sum (Σ) outputs are provided for each bit and the resultant carry (C_2) is obtained from the second bit. Designed for medium to high speed, multiple-bit, parallel-add/serial-carry applications, the circuit utilizes high speed, high fan-out TTL. The implementation of a single-inversion, high speed, Darlington-connected serial-carry circuit within each bit minimizes the necessity for extensive "lookahead" and carry-cascading circuits. #### **ORDERING CODE:** See Section 9 | | PIN | COMMERCIAL GRADE | MILITARY GRADE | PKG | | | | | |--------------------|-----|--|----------------|------|--|--|--|--| | PKGS | оит | $V_{CC} = +5.0 \text{ V} \pm 5\%,$ $V_{CC} = +5.0 \text{ V} \pm 10\%$
$T_A = 0^{\circ} \text{C to } +70^{\circ} \text{C}$ $T_A = -55^{\circ} \text{C to } +125^{\circ}$ | | TYPE | | | | | | Plastic
DIP (P) | A | 7482PC | | 9A | | | | | | Ceramic
DIP (D) | Α | 7482DC | 5482DM | 6A | | | | | | Flatpak
(F) | Α | 7482FC | 5482FM | 31 | | | | | ## LOGIC SYMBOL #### INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions | PIN NAMES | DESCRIPTION | 54/74 (U.L.)
HIGH/LOW | | | |---------------------------------|----------------------|---------------------------------|--|--| | A ₁ , B ₁ | Bit 1 Operand Inputs | 4.0/4.0 | | | | A ₂ , B ₂ | Bit 2 Operand Inputs | 1.0/1.0 | | | | CIN | Bit 1 Carry Input | 4.0/4.0 | | | | Σ_1 | Bit 1 Sum Output | 10/10 | | | | Σ_2 | Bit 2 Sum Output | 10/10 | | | | C ₂ | Bit 2 Carry Output | 5.0/5.0 | | | ### **TRUTH TABLE** | | INPUTS | | | | OUTPUTS | | | | | | | |---|----------------|-----------------------|------------------|-----------------------|---------|-----------|-----------------------|-----------|------------------|------------------|--| | | | | | | | CIN | = 0 | | Cin = 1 | | | | H L L L H L L L H L L H L H L H L H H L L H H L H H L H H L H H L H H L H H L H H L H H L H H H L H H L H H L H H L H H L H H L H H L H H L H H L H H H L H H L H H L H H L H H L H H L H H L H H L H H L H H L H H L H H L H H L H L H H L H L H H L | A ₁ | B ₁ | A 2 | B ₂ | Σ1 | Σ2 | C ₂ | Σ1 | Σ2 | C ₂ | | | | HLH LHL | LHHLLH | LLLHHH | | HHL LHH | LHHHH | | LLHHLL | HHHHLL | L
L
H
H | | | L | | L
H
H
L
L | L
L
L
H | H
H
H
H
H | LHHL LH | H H L L L | L
L
H
H
H | H L L H L | H
L
L
L | L H H H H H | | H = HIGH Voltage Level L = LOW Voltage Level ## LOGIC DIAGRAM # DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified) | SYMBOL | PARAMETER | | 54/74 | | UNITS | CONDITIONS | | |--------|---------------------------|-----|-------|-----|------------|---|--| | | TAILANE LEIT | Min | Max | | CONDITIONS | | | | los | Output Short Circuit XM | | -20 | -55 | mA | V _{CC} = Max | | | .03 | Current at Σ _n | -18 | | | | | | | los | Output Short Circuit | ХМ | -20 | -70 | mA | V _{CC} = Max | | | .00 | Current at C ₂ | хс | -18 | -70 | | 100 | | | lcc | | XM | | 50 | | V _{CC} = Max;
A ₁ , A ₂ , C _{IN} = 4.5 V;
B ₁ , B ₂ = Gnd | | | | Power Supply Current | хс | | 58 | mA | | | ## AC CHARACTERISTICS: $V_{CC} = +5.0 \text{ V}$, $T_A = +25^{\circ} \text{ C}$ (See Section 3 for waveforms and load configurations) | | | 54/74 C _L = 15 pF R _L = 400 Ω | | | | |--------------|--|--|----------|-------|--| | SYMBOL | PARAMETER | | | UNITS | CONDITIONS | | | | Min | Max | 1 | | | tpLH
tpHL | Propagation Delay
C _{IN} to Σ ₁ | | 34
40 | ns | Figs. 3-1, 3-20 | | tPLH
tPHL | Propagation Delay B_2 to Σ_2 | | 40
35 | ns | Figs. 3-1, 3-20 | | tPLH
tPHL | Propagation Delay C_{IN} to Σ_2 | | 38
42 | ns | Figs. 3-1, 3-20 | | tPLH
tPHL | Propagation Delay
C _{IN} to C ₂ | - | 19
27 | ns | Figs. 3-1, 3-5
R _L = 780 Ω |