54/74199
 8-BIT PARALLEL I/O SHIFT REGISTER

DESCRIPTION - The '199 is a parallel in, parallel out register featuring synchronous parallel load, shift right and hold modes. State changes are initiated by the rising edge of the clock. Serial entry into the first stage is via J and $\overline{\mathrm{K}}$ inputs for maximum flexibility. Two clock inputs are provided and it is possible to use one as an inhibit. An asynchronous Master Reset $(\overline{M R})$ input overrides all other inputs and clears the register.

- PARALLEL IN/PARALLEL OUT
- SYNCHRONOUS PARALLEL LOAD
- ASYNCHRONOUS OVERRIDING CLEAR
- Jर्K ENTRY TO FIRST STAGE

ORDERING CODE: See Section 9

PKGS	$\begin{aligned} & \text { PIN } \\ & \text { OUT } \end{aligned}$	COMMERCIAL GRADE	MILITARY GRADE	$\begin{aligned} & \text { PKG } \\ & \text { TYPE } \end{aligned}$
		$\begin{aligned} & V C C=+5.0 \mathrm{~V} \pm 5 \% \\ & T_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \mathrm{VCC}=+5.0 \mathrm{~V} \pm 10 \% \\ & \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$	
Plastic DIP (P)	A	74199PC		9N
Ceramic DIP (D)	A	74199DC	54199DM	6N
Flatpak (F)	A	74199FC	54199FM	4M

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

PIN NAMES	DESCRIPTION	$54 / 74$ (U.L.) HIGH/LOW
$\overline{\mathrm{K}}$	Serial Data Input (Active LOW)	$1.0 / 1.0$
J	Serial Data Input (Active HIGH)	$1.0 / 1.0$
$\mathrm{P}_{0}-\mathrm{P}_{7}$	Parallel Data Inputs	$1.0 / 1.0$
$\overline{\mathrm{CP}}, \mathrm{CP} 2$	Clock Pulse Inputs (Active Rising Edge)	$1.0 / 1.0$
$\overline{\mathrm{PR}}$	Asynchronous Master Reset Input (Active LOW)	$1.0 / 1.0$
$\mathrm{Q} 0-\mathrm{Q}_{7}$	Parallel Enable Input (Active LOW)	$1.0 / 1.0$

LOGIC SYMBOL

FUNCTIONAL DESCRIPTION - The '199 contains eight edge-triggered D-type flip-flops and the interstage gating required to perform synchronous parallel load and shift right operations. Parallel input data is applied to the $P_{0}-P_{7}$ inputs, while serial entry to Q_{0} is via J and \bar{K}. State changes are initiated by the rising edge of the clock. The $J, \bar{K}, P_{0}-P_{7}$ and $\overline{P E}$ inputs can change while the clock is in either state, provided only that the recommended setup and hold times are observed.

Either CP input can be used as the clock; if one is not used it must be tied LOW. One CP input can be used to inhibit the other by applying a HIGH signal, but this should only be done while the other CP is in the HIGH state or else false triggering may result. A LOW signal on $\overline{M R}$ overrides all other inputs and forces the outputs LOW.

MODE SELECT TABLE

INPUTS				RESPONSE
	$\overline{\text { PE }}$			
L	X	X	X	Asynchronous Reset; Outputs = LOW
$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & H \\ & X \end{aligned}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{H} \end{aligned}$	Hold
$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$	$\stackrel{\text { L }}{\sim}$	L	Parallel Load; $\mathrm{P}_{\mathrm{n}} \longrightarrow \mathrm{Qn}_{\mathbf{n}}$
$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\stackrel{\mathrm{L}}{\sim}$	$\stackrel{\Gamma}{L}$	Shift Right, $\mathrm{Q}_{0} \rightarrow \mathrm{Q}_{1}, \mathrm{Q}_{1} \rightarrow \mathrm{Q}_{2}$, etc.

*See discussion for precautions on CP changes $H=$ HIGH Voltage Level L = LOW Voltage Level
$X=$ Immaterial
SERIAL ENTRY TABLE
($\overline{\mathbf{M R}}=\overline{\mathbf{P} E}=$ HIGH)

INPUTS		Q_{0} at $t_{n}+1^{*}$
J	\bar{K}	
L	L	L
L	H	Q_{0} at t_{n} (No Change)
H	L	\bar{Q}_{0} at t_{n} (Toggles)
H	H	H

${ }^{\prime} t_{n}, t_{n}+1=$ time before, after rising CP edge

LOGIC DIAGRAM

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

SYMBOL	PARAMETER		54/74		UNITS	CONDITIONS
			Min	Max		
Icc	Power Supply Current	XC		$\begin{aligned} & 116 \\ & 104 \end{aligned}$	mA	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=\mathrm{Max} ; J, \overline{\mathrm{~K}}, \mathrm{P}_{\mathrm{n}}=4.5 \mathrm{~V} \\ & C P_{1}=J \\ & C P_{2}, \overline{M R}, \overline{\mathrm{PE}}=\mathrm{Gnd} \end{aligned}$

AC CHARACTERISTICS: $\mathrm{V}_{\mathrm{C}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 3 for waveforms and load configurations)

SYMBOL	PARAMETER			UNITS	CONDITIONS
		$\begin{aligned} & C_{L}=15 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=400 \Omega \end{aligned}$			
		Min	Max		
$f_{\text {max }}$	Maximum Shift Frequency	25		MHz	Figs. 3-1, 3-8
$\begin{aligned} & \text { tPLH } \\ & \text { tphL } \end{aligned}$	Propagation Delay $C P_{1}$ or $C P_{2}$ to Q_{n}		$\begin{aligned} & 26 \\ & 30 \end{aligned}$	ns	Figs. 3-1, 3-8
tphL	Propagation Delay $\overline{M R}$ to Q_{n}		35	ns	Figs. 3-1, 3-16

AC OPERATING REQUIREMENTS: $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	54/74		UNITS	CONDITIONS
		Min	Max		
$\begin{aligned} & \text { ts }_{5}(H) \\ & \text { ts }_{s}(\mathrm{~L}) \end{aligned}$	Setup Time HIGH or LOW P_{n}, \bar{K}, J to $C P$	$\begin{aligned} & 20 \\ & 20 \end{aligned}$		ns	Fig. 3-6
$\begin{aligned} & \hline \operatorname{tn}(H) \\ & \operatorname{tn}(L) \end{aligned}$	Hold Time HIGH or LOW P_{n}, \bar{K}, J to $C P$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$		ns	
$\begin{aligned} & t_{s}(H) \\ & t_{s}(L) \end{aligned}$	Setup Time HIGH or LOW $\overline{P E}$ to CP	$\begin{aligned} & 30 \\ & 30 \end{aligned}$		ns	
$\begin{aligned} & \operatorname{th}(H) \\ & \operatorname{th}(L) \end{aligned}$	Hold Time HIGH or LOW $\overline{P E}$ to $C P$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$		ns	
$\mathrm{t}_{\mathrm{w}}(\mathrm{H})$	CP Pulse Width HIGH	20		ns	Fig. 3-8
$t_{w}(L)$	$\overline{\text { MR Pulse Width LOW }}$	20		ns	Fig. 3-16

