11C06

11C06 750 MHz D-Type Flip-Flop

Literature Number: SNOS372A

Not Intended For New Designs August 1992

11C06 750 MHz D-Type Flip-Flop

11C06 750 MHz D-Type Flip-Flop

General Description

The 11C06 is a high-speed ECL D-Type Master-Slave Flip-Flop capable of toggle rates over 750 MHz. Designed primarily for high-speed prescaling, it can also be used in any application which does not require preset inputs. The circuit is voltage-compensated, which makes input thresholds and

output levels insensitive to V_{EE} variations. Complementary Q and \overline{Q} outputs are provided, as are two Data inputs, Clock and Clock Enable inputs. The 11C06 is pin-compatible with the Motorola MC1690L but is a higher-frequency replacement.

©1995 National Semiconductor Corporation TL/F/9890

RRD-B30M115/Printed in U. S. A.

Absolute Maximum Ratings

Above which the useful life may be impaired					
If Military/Aerospace specified please contact the National Office/Distributors for availabilit	devices are required, Semiconductor Sales y and specifications.				
Storage Temperature	-65°C to +150°C				
Maximum Junction Temperature (T	J) + 150°C				
Supply Voltage Range	-7.0V to GND				
Input Voltage (DC)	V _{EE} to GND				
Output Current (DC Output HIGH)	—50 mA				

Operating Range -5.7V to -4.7VLead Temperature (Soldering, 10 sec.) 300°C

Recommended Operating Conditions

	Min	Тур	Мах
Supply Voltage (V _{EE})	-5.7V	-5.2V	-4.7V
Ambient Temperature (T _A)	0°C		+75°C

DC Electrical Characteristics

$V_{EE} =$	-5.2V, V	$_{\rm CC} = {\rm GND}$
------------	----------	-------------------------

Symbol	Parameter	Min	Тур	Max	Units	TA	Conditions
V _{OH}	Output Voltage HIGH	-1000		-840	mV	0°C	$V_{IN} = V_{IH (Max)}$ or $V_{IL (Min)}$ per Truth
		-960		-810	mV	+25°C	Table Loading 50 Ω to $-2V$
		-900		-720	mV	+75°C	
V _{OL}	Output Voltage LOW	- 1870		- 1635	mV	0°C	
		- 1850		-1620	mV	+25°C	
		-1830		-1595	mV	+75°C	
VOHC	Output Voltage HIGH	-1020			mV	0°C	$V_{IN} = V_{IH (Min)}$ or $V_{IL (Max)}$ for D _n Inputs
		-980			mV	+25°C	Loading 50 Ω to -2V
		-920			mV	+75°C	
V _{OLC}	Output Voltage LOW			-1615	mV	0°C	
				-1600	mV	+ 25°C	
				-1575	mV	+75°C	
VIH	Input Voltage HIGH	-1135		-840	mV	0°C	Guaranteed Input Voltage HIGH
		-1095		-810	mV	+25°C	for All Inputs
		- 1035		-720	mV	+75°C	
VIL	Input Voltage LOW	- 1870		-1500	mV	0°C	Guaranteed Input Voltage LOW
		- 1850		-1485	mV	+25°C	for All Inputs
		- 1830		-1460	mV	+75°C	
l _{IH}	Input Current HIGH						$V_{IN} = V_{IH (Max)}$
	Clock Input			250	μΑ	+ 25°C	
	Data Input			270	μA	+25°C	
IIL	Input Current LOW	0.5			μA	+ 25°C	V _{IN} = V _{IH (Min)}
IEE	Power Supply Current	-59	-40		mA	+25°C	All Inputs Open
AC Electrical Characteristics							

AC Electrical Characteristics

 $V_{\text{EE}} = -5.2 \text{V}, \, V_{\text{CC}} = \text{GND}, \, T_{\text{A}} = +25^{\circ}\text{C}$

Symbol	Parameter	Min	Тур	Max	Units	Conditions
t _{PHL} t _{PLH}	Propagation Delay (CP-Q) Propagation Delay (CP-Q)	0.7 0.7	1.0 1.0	1.2 1.2	ns ns	
t _{TLH} t _{THL}	Transition Time 20% to 80% Transition Time 80% to 20%	0.5 0.5	0.8 0.8	1.0 1.0	ns ns	See Figure 1
t _S	Set-up Time		0.2		ns	
t _H	Hold Time		0.2		ns	
^f tog (MAX)	Toggle Frequency (CP)	650	750		MHz	See Figure 2, Note

Note: The device is guaranteed for f_{TOG} (CP) \geq 600 MHz, f_{TOG} (CE) \geq 550 MHz over the 0°C to +75°C temperature range.

Functional Description

While the clock is LOW, the slave is held steady and the information on the D input is permitted to enter the master. The next transition from LOW to HIGH locks the master in its present state making it insensitive to the D input. This transition simultaneously connects the slave to the master causing the new information to appear on the outputs. Master and slave clock thresholds are internally offset in opposite directions to avoid race conditions or simultaneous

master-slave changes when the clock has slow rise or fall times.

The CP and \overline{CE} inputs are logically identical, but physical constraints associated with the Dual-In-Line package make the \overline{CE} input slower at the upper end of the toggle range. To prevent new data from entering the master on the next CP LOW cycle, \overline{CE} should go HIGH while CP is still HIGH.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Audio	www.ti.com/audio	Communications and Telecom	www.ti.com/communications
Amplifiers	amplifier.ti.com	Computers and Peripherals	www.ti.com/computers
Data Converters	dataconverter.ti.com	Consumer Electronics	www.ti.com/consumer-apps
DLP® Products	www.dlp.com	Energy and Lighting	www.ti.com/energy
DSP	dsp.ti.com	Industrial	www.ti.com/industrial
Clocks and Timers	www.ti.com/clocks	Medical	www.ti.com/medical
Interface	interface.ti.com	Security	www.ti.com/security
Logic	logic.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Power Mgmt	power.ti.com	Transportation and Automotive	www.ti.com/automotive
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Mobile Processors	www.ti.com/omap		
Wireless Connectivity	www.ti.com/wirelessconnectivity		

TI E2E Community Home Page

e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2011, Texas Instruments Incorporated