

TRIPLE 2-3-2 OR/NOR GATE 10105

10105B,F: --30 to +85°C

DIGITAL 10,000 SERIES ECL

DESCRIPTION

The 10105 package contains one 3 input OR/NOR gate, and two 2 input OR/NOR gates. The 10105 is optimized for high performance logic applications. Each gate has an excellent speed power product of 50 picojoules. All inputs are terminated with a 50 k Ω resistor to VEE which eliminates the need to tie unused inputs low. The high impedance inputs and high output fanout is ideal for a transmission line environment. This gate meets the ECL 10,000 Series standard voltage, current, and rise and fall time specifications.

Complementary outputs make the 10105 particularly useful for differential line driving.

FEATURES

- FAST PROPAGATION DELAY = 2.0 ns TYP
- POWER DISSIPATION = 75 mW/PACKAGE TYP (NO LOAD)
- VERY HIGH FANOUT CAPABILITY
 CAN DRIVE 50 Ω LINES
- HIGH Z INPUTS INTERNAL 50 k Ω PULLDOWNS
- HIGH IMMUNITY FROM POWER SUPPLY VARIATIONS: VEE = $-5.2 V \pm 5\%$ RECOMMENDED
- COMPLEMENTARY OR/NOR OUTPUTS
- OPEN EMITTER LOGIC AND BUSSING CAPABILITY

TEMPERATURE RANGE

• -30 to +85°C Operating Ambient

PACKAGE TYPE

B: 16-Pin Silicone DIP F: 16-Pin CERDIP

CIRCUIT SCHEMATIC

LECTRICAL CHARACTERISTICS											TEST VOLTAGE VALUES					
										ØTest	(Volta)					
at Listed voltages and Ampient Temperatures).								nperature	VIH max	VIL min	VIL min VIHA min		VEE			
										-30°C	-0.890	-1,890	-1.205	-1.500	-5.2	
									+25°C +85°C		-0.810	-1.850	-1.105	-1.475	-5.2 -5.2	1
																(
	Symbol	Pin Under Test	10108 Test Limite								TEST VOLTAGE APPLIED TO PINS LISTED BELOW:					
Characteristic			-30° C		+25°C			+86° C								(Vcc)
			Min	Mex	Min	Тур	Мах	Min	Max	Unit	VIH max	VIL min	VINA min	VILA max	VEE	Gnd
Power Supply Drein Current	1E	8	<u> </u>	-	-	16	21	-	-	mAde	-	-	-	-	8	1,16
Input Current	linH	4	-	-	- 1	1	265	-	-	#Adc	4	-		-	8	1,16
	linL	4	-	-	0.5	-	-	-	-	µAdc	-	4	-	-	8	1,16
Logic "1" Output Voltage	Voн	3	-1.060	-0 890	-0.960	-	~0.810	-0.890	-0.700	Vdc		4	1	-	8	1,16
		2	-1.060	-0.890	-0.960	-	-0.810	-0 890	-0.700	Vdc	4		-	-	8	1,16
Logic "0" Output Voltage	VOL	3	-1.890	-1.676	-1 860	-	-1.650	-1.825	-1.615	Vric	4	-	-	-	8	1,16
		2	-1.890	-1.675	-1.860	-	-1.650	-1.825	-1.615	Vdc	-	4	-	-	8	1,16
Logic "1" Threshold Voltage	VOHA	3	-1.080	-	-0 980	-	-	-0.910	-	Vdc	-	-	-	4	8	1,16
		2	-1.080	-	-0.980	1.00	-	-0.910	-	Vdc	-	-	4	-	8	1,16
Logic "O" Threshold Voltage	VOLA	3	-	-1.655	-	-	-1.830		-1.595	Vdc	-	-	4	-	8	1,16
		2	-	-1.666	-	+	-1.630	-	-1.698	Vdc	-	-	-	4	8	1,16
Switching Times *	1.1												Pulse in	Pulse Out	-3.2 V	+2.0 V
(60-ahm load)								1						1	<u> </u>	
Propagation Delay	14+ 3-	з	1.0	3.1	1.0	2.0	2.9	1.0	3.3	ns	-		4	3	8	1,16
	14-3+	з					11	1 1			-	-		з	11	11
	14+ 2+	2			1 1		11				-	-		6	11	
	14-2-	2									-			6		
Rise Time (20% to B0%)	13+	з	1.1	3.6	1.1		3.3	1.1	37		-	-		3		
	12+	2		1 1	1		1 1				-	-		6		
Fell Time (20% to 80%)	13-	3					14				-	-		3		
	12-	2	1				11	1		F (-	-	- 1		6	11	

*Unused outputs connected to a 50-ohm resistor to ground.

SWITCHING TIME TEST CIRCUIT

PROPAGATION DELAY WAVEFORMS @ 25°C

NOTES

- Each ECL 10,000 series device has been designed to meet the DC specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Voltage levels will shift approximately 3 mV with an air flow of 200 linear fpm. Outputs are terminated through a 50-ohm resistor to 2.0 volts.
- 2. For AC tests, all input and output cables to the scope are equal lengths of 50-ohm coaxial cable. Wire length should be <1/4 inch from TP_{in} to input pin and TP_{out} to output pin. A 50-ohm termination to ground is located in each scope input. Unused outputs are connected to a 50-ohm resistor to ground.
- 3. Test procedures are shown for only one input or set of input conditions. Other inputs are tested in the same manner.
- 4. All voltage measurements are referenced to the ground terminal. Terminals not specifically referenced are left electrically open.