100328

100328 Low Power Octal ECL/TTL Bi-Directional Translator with Latch

Literature Number: SNOS111

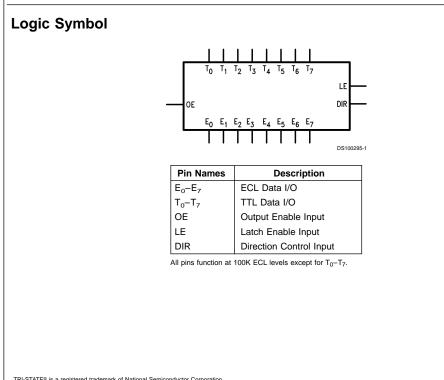
August 1998

00328 Low Power Octal ECL/TTL Bi-Directional Translator with Latch

🗙 National Semiconductor

100328 Low Power Octal ECL/TTL Bi-Directional Translator with Latch

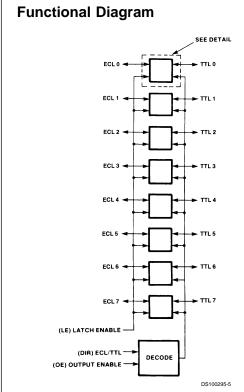
General Description


The 100328 is an octal latched bi-directional translator designed to convert TTL logic levels to 100K ECL logic levels and vice versa. The direction of this translation is determined by the DIR input. A LOW on the output enable input (OE) holds the ECL outputs in a cut-off state and the TTL outputs at a high impedance level. A HIGH on the latch enable input (LE) latches the data at both inputs even though only one output is enabled at the time. A LOW on LE makes the 100328 transparent.

The cut-off state is designed to be more negative than a normal ECL LOW level. This allows the output emitter-followers to turn off when the termination supply is -2.0V, presenting a high impedance to the data bus. This high impedance reduces termination power and prevents loss of low state noise margin when several loads share the bus.

The 100328 is designed with FAST® TTL output buffers, featuring optimal DC drive and capable of quickly charging and discharging highly capacitive loads. All inputs have 50 k Ω pull-down resistors.

Features


- Identical performance to the 100128 at 50% of the supply current
- Bi-directional translation
- 2000V ESD protection
- Latched outputs
- FAST TTL outputs
- TRI-STATE[®] outputs
- Voltage compensated operating range = -4.2V to -5.7V
- Available to MIL-STD-883

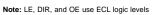
TRI-STATE® is a registered trademark of National Semiconductor Corporation. FAST® is a registered trademark of Fairchild Semiconductor.

© 1998 National Semiconductor Corporation DS100295

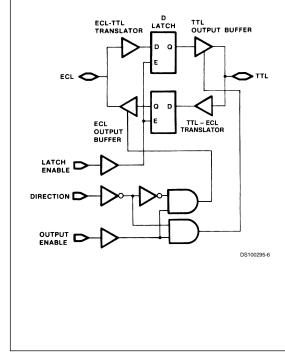
Truth Table

OE	DIR	LE	ECL	TTL	Notes
			Port	Port	
L	Х	L	LOW	Z	
			(Cut-Off)		
L	L	н	Input	Z	(Notes 1, 3)
L	Н	н	LOW	Input	(Notes 2, 3)
			(Cut-Off)		
Н	L	L	L	L	(Notes 1, 4)
Н	L	L	Н	н	(Notes 1, 4)
Н	L	Н	Х	Latched	(Notes 1, 3)
Н	Н	L	L	L	(Notes 2, 4)
Н	Н	L	Н	Н	(Notes 2, 4)
Н	Н	н	Latched	Х	(Notes 2, 4)

H = HIGH Voltage Level L = LOW Voltage Level X = Don't Care


Z = High Impedance

Note 1: ECL input to TTL output mode.


Note 2: TTL input to ECL output mode.

Note 3: Retains data present before LE set HIGH.

Note 4: Latch is transparent.

Detail

Absolute Maximum Ratings (Note 5)

.

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Storage Temperature (T _{STG})	-65°C to +150°C
Maximum Junction Temperature (T _J)	
Ceramic	+175°C
V _{EE} Pin Potential to	
Ground Pin	-7.0V to +0.5V
V _{TTL} Pin Potential to	
Ground Pin	-0.5V to +6.0V
ECL Input Voltage (DC)	V _{EE} to +0.5V
ECL Output Current	
(DC Output HIGH)	–50 mA
TTL Input Voltage (Note 7)	-0.5V to +6.0V
TTL Input Current (Note 7)	-30 mA to +5.0 mA

Voltage Applied to Output in HIGH State					
TRI-STATE Output	-0.5V to +5.5V				
Current Applied to TTL					
Output in LOW State (Max)	Twice the Rated I _{OL} (mA)				
ESD (Note 6)	≥2000V				

Recommended Operating Conditions

Case Temperature (T _C)					
Military	–55°C to +125°C				
ECL Supply Voltage (V _{EE})	-5.7V to -4.2V				
TTL Supply Voltage (V _{TTL})	+4.5V to +5.5V				
Note 5: Absolute maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.					
Note 6: ESD testing conforms to MIL-STD-883, Method 3015.					
Note 7: Either voltage limit or current limit is sufficient to protect inputs.					

Military Version TTL-to-ECL DC Electrical Characteristics

 $V_{FF} = -4.2V$ to -5.7V, $V_{CC} = V_{CCA} = GND$, $T_{C} = -55^{\circ}C$ to +125°C, $V_{TTI} = +4.5V$ to +5.5V

Symbol	Parameter	Min	Max	Units	Tc	Conditions		Notes
V _{он}	Output HIGH Voltage	-1025	-870	mV	0°C to		Loading with	(Notes 8, 9
					+125°C		50Ω to -2.0V	10)
		-1085	-870	mV	–55°C	V _{IN} = V _{IH} (Max)		
V _{OL}	Output LOW Voltage	-1830	-1620	mV	0°C to	or V _{IL} (Min)		
					+125°C			
		-1830	-1555	mV	–55°C			
	Cutoff Voltage		-1950	mV	0°C to			
					+125°C	OE or DIR Low		
			-1850	mV	–55°C			
V _{OHC}	Output HIGH Voltage	-1035		mV	0°C to			(Notes 8, 9
					+125°C			10)
		-1085		mV	–55°C	V _{IN} = V _{IH} (Min)	Loading with	
V _{OLC}	Output LOW Voltage		-1610	mV	0°C to	or V _{IL} (Max)	50Ω0 to -2.0V	
					+125°C			
			-1555	mV	–55°C			
VIH	Input HIGH Voltage	2.0		V	–55°C to	Over V _{TTL} , V _{EE} , T _o	Range	(Notes 8, 9
					+125°C			10, 11)
VIL	Input LOW Voltage		0.8	V	–55°C to Over V _{TTL} , V _{EE} , T _C Rang		Range	(Notes 8, 9
					+125°C			10, 11)
I _{IH}	Input HIGH Current		70	μA	–55°C to	V _{IN} = +2.7V		(Notes 8, 9
					125°C			10)
	Breakdown Test		1.0	mA	–55°C to	V _{IN} = +5.5V		
					+125°C			
I _{IL}	Input LOW Current	-1.0		mA	–55°C to	V _{IN} = +0.5V		(Notes 8, 9
					+125°C			10)
V _{FCD}	Input Clamp	-1.2		V	–55°C to	I _{IN} = -18 mA		(Notes 8, 9
	Diode Voltage				+125° C			10)
I _{EE}	V _{EE} Supply Current					LE Low, OE and D	IR High	(Notes 8, 9
					–55°C to	Inputs Open		10)
		-165	-73	mA	+125°C	$V_{EE} = -4.2V$ to -4	.8V	
		-175	-73			V _{FF} = -4.2V to -5	.7V	

Military Version ECL-to-TTL DC Electrical Characteristics $V_{EE} = -4.2V$ to -5.7V, $V_{CC} = V_{CCA} = GND$, $T_C = -55$ °C to +125°C, $C_L = 50$ pF, $V_{TTL} = +4.5V$ to + 5.5V							
Symbol	Parameter	Min	Max	Units	Т _с	Conditions	Notes
V _{он}	Output HIGH Voltage	2.5		mV	0°C to +125°C	I _{OH} = -1 mA, V _{TTL} = 4.50V	(Notes 8, 9, 10)
		2.4			–55°C		
V _{OL}	Output LOW Voltage		0.5	mV	–55°C	I _{OL} = 24 mA, V _{TTL} = 4.50V	
					+125°C		
VIH	Input HIGH Voltage	-1165	-870	mV	–55°C	Guaranteed HIGH Signal	(Notes 8, 9, 10, 11)
					+125°C	for All Inputs	
VIL	Input LOW Voltage	-1830	-1475	mV	–55°C to	Guaranteed LOW Signal	(Notes 8, 9, 10, 11)
					+125°C	for All Inputs	
I _{IH}	Input HIGH Current		350	μA	0°C to	V _{EE} = -5.7V	(Notes 8, 9, 10)
			500		+125°C	$V_{IN} = V_{IH}$ (Max)	
I _{IL}	Input LOW Current	0.50		μA	–55°C to	$V_{EE} = -4.2V$	(Notes 8, 9, 10)
					+125°C	$V_{IN} = V_{IL}$ (Min)	
I _{OZHT}	TRI-STATE Current		70	μA	–55°C to	V _{OUT} = +2.7V	(Notes 8, 9, 10)
	Output High				+125°C		
I _{OZLT}	TRI-STATE Current	-1.0		mA	–55°C to	V _{OUT} = +0.5V	(Notes 8, 9, 10)
	Output Low				+125°C		
los	Output Short-Circuit	-150	-60	mA	–55°C to	$V_{OUT} = 0.0V, V_{TTL} = +5.5V$	(Notes 8, 9, 10)
	CURRENT				+125°C		
ITTL	V _{TTL} Supply Current		75	mA	–55°C to	TTL Outputs Low	(Notes 8, 9, 10)
			50	mA	+125°C	TTL Output High	
			70	mA		TTL Output in TRI-STATE	

Note 8: F100K 300 Series cold temperature testing is performed by temperature soaking (to guarantee junction temperature equals -55°C), then testing immediately without allowing for the junction temperature to stabilize due to heat dissipation after power-up. This provides "cold start" specs which can be considered a worst case condition at cold temperatures.

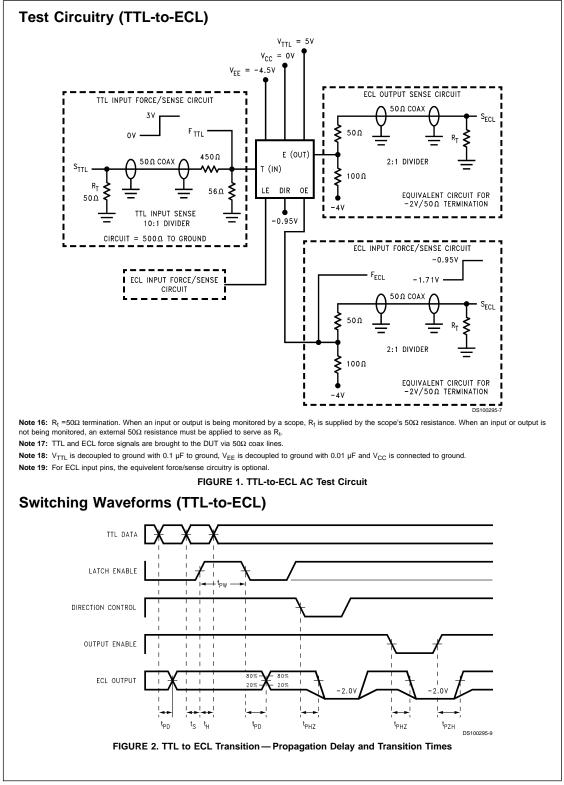
Note 9: Screen tested 100% on each device at -55°C, +25°C, and +125°C, Subgroups, 1, 2 3, 7, and 8.

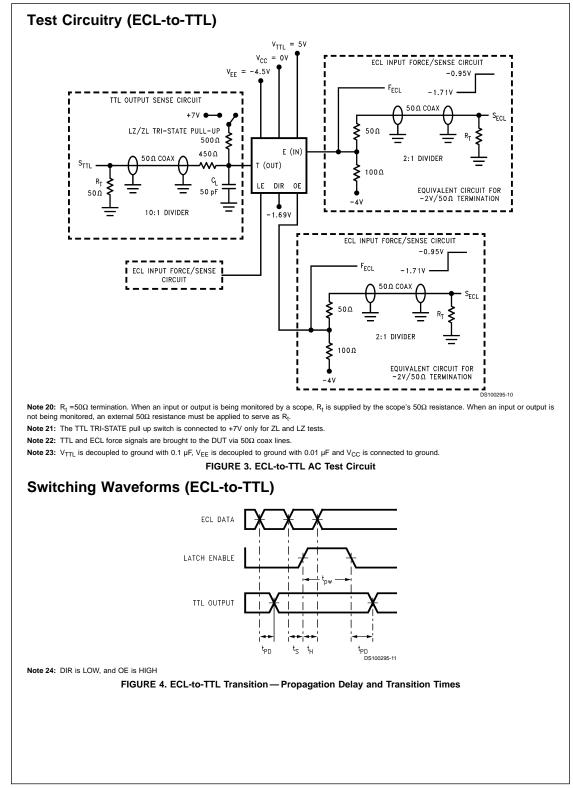
Note 10: Sample tested (Method 5005, Table I) on each manufactured lot at -55°C, +25°C, and +125°C, Subgroups A1, 2, 3, 7, and 8.

Note 11: Guaranteed by applying specified input condition and testing $V_{OH}\!/\!V_{OL}$.

$\begin{array}{l} \mbox{Military Version} \\ \mbox{TTL-to-ECL AC Electrical Characteristics} \\ \mbox{V}_{\text{EE}} = -4.2 V \ \mbox{to} \ -5.7 V, \ \mbox{V}_{\text{TTL}} = +4.5 V \ \mbox{to} \ +5.5 V, \ \mbox{V}_{\text{CC}} = \ \mbox{V}_{\text{CCA}} = \ \mbox{GND} \end{array}$

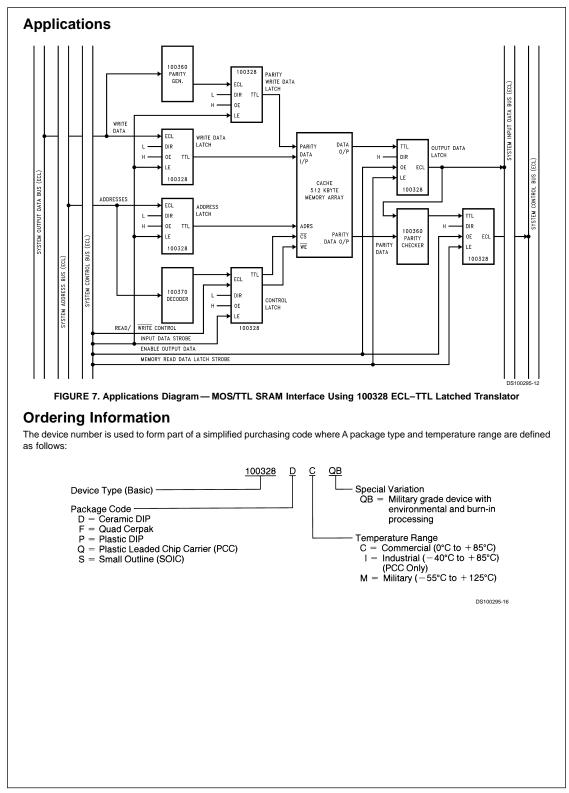
Symbol	Parameter $T_c = -55^{\circ}C$ $T_c = 25^{\circ}C$ $T_c = +125^{\circ}C$		Units	Conditions	Notes					
		Min	Max	Min	Max	Min	Max	1		
t _{PLH}	T _N to E _n	0.8	3.4	1.1	3.6	0.8	3.7	ns	Figures 1, 2	(Notes 12,
t _{PHL}	(Transparent)							ns		13, 14)
t _{PLH}	LE to E _n	1.2	3.8	1.4	3.7	1.1	3.8	ns	Figures 1, 2	
t _{PHL}								ns		
t _{PZH}	OE to E _n	0.8	3.6	1.5	4.0	2.0	5.2	ns	Figures 1, 2	(Notes 12,
	(Cutoff to HIGH)									13, 14)
t _{PHZ}	OE to E _n	1.5	4.6	1.6	4.2	1.6	4.3	ns	Figures 1, 2	
	(HIGH to Cutoff)									
t _{PHZ}	DIR to E _n	1.6	4.7	1.6	4.3	1.7	4.3	ns	Figures 1, 2	
	(HIGH to Cutoff)									
t _{set}	T _n to LE	2.5		2.0		2.5		ns	Figures 1, 2	(Note 15)
t _{hold}	T _n to LE	2.5		2.0		2.5		ns	Figures 1, 2	
t _{pw} (H)	Pulse Width LE	2.5		2.0		2.5		ns	Figures 1, 2	(Note 15)
t _{TLH}	Transition Time	0.4	2.3	0.5	2.1	0.4	2.4	ns	Figures 1, 2	(Note 15)
t _{⊤HL}	20% to 80%, 80% to 20%									


2 I I	-4.2V to -5.7V, V _{TTL} :						-	11	0	Nataa
Symbol	Parameter	Min	–55°C Max	Min	= 25°C Max	I _C = · Min	+125°C Max	Units	Conditions	Notes
t _{PLH} t _{PHL}	E _n to T _n (Transparent)	2.1	6.0	2.0	5.6	2.2	6.3	ns	Figures 1, 2	(Notes 12, 13, 14)
t _{PLH} t _{PHL}	LE to T _n	3.1	7.0	3.1	6.5	3.3	7.5	ns	Figures 3, 4	
t _{PZH}	OE to T _n	3.2	8.0	3.7	8.0	4.0	9.2	ns	Figures 3, 4	(Notes 12, 13
t _{PZL}	(Enable Time)	3.6	8.0	4.0	8.5	4.3	9.6			14)
t _{PHZ}	OE to T _n	3.2	8.5	3.3	8.0	3.5	8.4	ns	Figures 3, 5	
t _{PLZ}	(Disable Time)	3.0	8.0	3.4	7.5	4.1	10.0			
t _{PHZ}	DIR to T _n	2.6	7.0	2.6	7.0	2.9	8.0	ns	Figures 3, 6	
t _{PLZ}	(Disable Time)	2.7	7.0	3.1	7.0	4.0	10.0			
t _{set}	E _n to LE	2.5		2.0		2.5		ns	Figures 3, 4	(Note 15)
t _{hold}	E _n to LE	3.0		2.5		3.0		ns	Figures 3, 4	
t _{pw} (H)	Pulse Width LE	2.5		2.0		5.0		ns	Figures 3, 4	(Note 15)


Note 12: F100K 300 Series cold temperature testing is performed by temperature soaking (to guarantee junction temperature equals -55°C), then testing immediately after power-up. This provides "cold start" specs which can be considered a worst case condition at cold temperatures.

Note 13: Screen tested 100% on each device at +25°C, temperature only, Subgroup A9.

Note 14: Sample tested (Method 5005, Table I) on each mfg. lot at +25°C, Subgroup A9, and at +125°C and –55°C temperatures, Subgroups A10 and A11. Note 15: Not tested at +25°C, +125°C and –55°C temperature (design characterization data).


•

8

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DE-VICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMI-CONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

	National Semiconductor	National Semiconductor	National Semiconductor	National Semiconductor
N.	Corporation	Europe	Asia Pacific Customer	Japan Ltd.
\mathcal{U}^{\bullet}	Americas	Fax: +49 (0) 1 80-530 85 86	Response Group	Tel: 81-3-5620-6175
	Tel: 1-800-272-9959	Email: europe.support@nsc.com	Tel: 65-2544466	Fax: 81-3-5620-6179
	Fax: 1-800-737-7018	Deutsch Tel: +49 (0) 1 80-530 85 85	Fax: 65-2504466	
	Email: support@nsc.com	English Tel: +49 (0) 1 80-532 78 32	Email: sea.support@nsc.com	
		Français Tel: +49 (0) 1 80-532 93 58		
vww.na	ational.com	Italiano Tel: +49 (0) 1 80-534 16 80		

National does not assume any responsibility for use of any circuity described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Audio	www.ti.com/audio	Communications and Telecom	www.ti.com/communications
Amplifiers	amplifier.ti.com	Computers and Peripherals	www.ti.com/computers
Data Converters	dataconverter.ti.com	Consumer Electronics	www.ti.com/consumer-apps
DLP® Products	www.dlp.com	Energy and Lighting	www.ti.com/energy
DSP	dsp.ti.com	Industrial	www.ti.com/industrial
Clocks and Timers	www.ti.com/clocks	Medical	www.ti.com/medical
Interface	interface.ti.com	Security	www.ti.com/security
Logic	logic.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Power Mgmt	power.ti.com	Transportation and Automotive	www.ti.com/automotive
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Mobile Processors	www.ti.com/omap		
Wireless Connectivity	www.ti.com/wirelessconnectivity		
		u Hama Dawa	a O a Al a a m

TI E2E Community Home Page

e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2011, Texas Instruments Incorporated