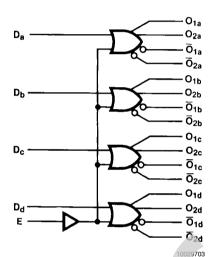
100313

100313 Low Power Quad Driver

Literature Number: SNOS113A

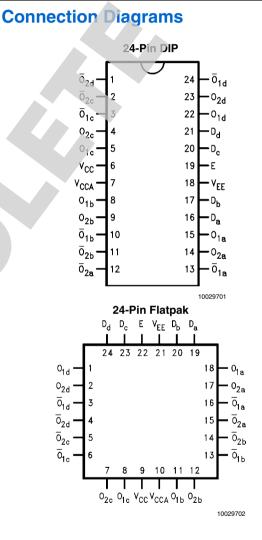
Low Power Quad Driver


General Description

The 100313 is a monolithic quad driver with two OR and two NOR outputs and common enable. The common input is buffered to minimize input loading. If the D inputs are not used the Enable can be used to drive sixteen 50Ω lines. All inputs have $50 \text{ k}\Omega$ pull-down resistors and all outputs are buffered.

Features

- 50% power reduction of the 100113
- 2000V ESD protection
- Pin/function compatible with 100113 and 100112
- Voltage compensated operating range = -4.2V to -5.7V
- Standard Microcircuit Drawing (SMD) 5962-9673201


Logic Symbol

Pin Descriptions

Pin Names	Description
D _a -D _d	Data Inputs
E	Enable Input
O _{na} -O _{nd}	Data Outputs
$\overline{O}_{na} - \overline{O}_{nd}$	Complementary Data Outputs

© 2009 National Semiconductor Corporation

iu ∞ Power Quad Driver

100297

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Storage Temperature (T _{STG})	–65°C to +150°C
Maximum Junction Temperature (T_J)	
Ceramic	+175°C
V _{EE} Pin Potential to Ground Pin	-7.0V to +0.5V
Input Voltage (DC)	V _{EE} to +0.5V

Output Current (DC Output HIGH) ESD (*Note 2*) –50 mA ≥2000V

Recommended Operating Conditions

Case Temperature (T _C)	
Military	–55°C to +125°C
Supply Voltage (V_{EE})	-5.7V to -4.2V

Note 1: Absolute maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

Note 2: ESD testing conforms to MIL-STD-883, Method 3015.

Military Version DC Electrical Characteristics

$V_{FF} = -4.2V$ to $-5.7V$, $V_{CC} = V_{CCA}$	= GND. T _c $=$	= -55°C to +125°C
$\mathbf{v}_{\rm FE} = 1.2 \mathbf{v}_{\rm CO} \mathbf{v}_{\rm O} \mathbf{v}_{\rm O} \mathbf{v}_{\rm CC} = \mathbf{v}_{\rm CCA}$	= 0.00, 1() =	

Symbol	Parameter	Min	Max	Units	т _с	Cond	Conditions	
V _{OH}	Output HIGH Voltage	-1025	-870	mV	0°C to +125°C			
		-1085	-870	mV	–55°C	V _{IN} =V _{IH (Max)}	Loading with	(Note 3, Note
V _{OL}	Output LOW Voltage	-1830	-1620	mV	0°C to +125°C	or V _{IL(Min)}	50Ω to -2.0V	4, Note 5)
		-1830	-1555	mV	–55°C			
V _{OHC}	Output HIGH Voltage	-1035		mV	0°C to +125°C			
		-1085		mV	–55°C	V _{IN} =V _{IH (Min)}	Loading with	(Note 3, Note
V _{OLC}	Output LOW Voltage		-1610	mV	0°C to +125°C	or V _{IL (Max)}	50Ω to -2.0V	4, Note 5)
			-1555	mV	-55°C			
V _{IH}	Input HIGH Voltage	-1165	-870	mV	-55°C to +125°C	Guaranteed HIGH Signal for All Inputs		(Note 3, Note 4, Note 5, Note 6)
V _{IL}	Input LOW Voltage	-1830	-1475	m∨	-55°C to +125°C	Guaranteed LOW Signal for All Inputs		(Note 3, Note 4, Note 5, Note 6)
I _{IL}	Input LOW Current	0.50		μA	–55°C to +125°C	$V_{EE} = -4.2V$ $V_{IN} = V_{IL (Min)}$		(Note 3, Note 4, Note 5)
IIH	Input HIGH Current							
	Data		350	μA	0°C to +125°C			
	Enable		240			$V_{EE} = -5.7V$		(Note 3, Note
	Data Enable		500 340	μA	–55°C	$V_{IN} = V_{IH (Max)}$		4, Note 5)
I _{EE}	Power Supply Current	-65	-20	mA	–55°C to +125°C	Inputs Open		(Note 3, Note 4, Note 5)

Note 3: F100K 300 Series cold temperature testing is performed by temperature soaking (to guarantee junction temperature equals –55°C), then testing immediately without allowing for the junction temperature to stabilize due to heat dissipation after power-up. This provides "cold start" specs which can be considered a worst case condition at cold temperatures.

Note 4: Screen tested 100% on each device at -55°C, +25°C, and +125°C, Subgroups 1, 2, 3, 7, and 8.

Note 5: Sample tested (Method 5005, Table I) on each manufactured lot at -55°C, +25°C, and +125°C, Subgroups A1, 2, 3, 7, and 8.

Note 6: Guaranteed by applying specified input condition and testing V_{OH}/V_{OL} .

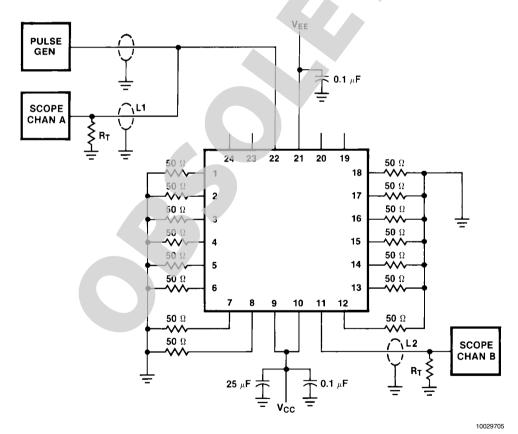
Military Version AC Electrical Characteristics

100313

$V_{EE} = -$	-4.2V t	o –5.7V	, v _{cc} =	$V_{CCA} =$	GND

Symbol	Parameter	T _c =	–55°C	T _C = +25°C		T _C = +125°C		Units	Conditions	Notes
		Min	Max	Min	Max	Min	Max			
t _{PLH}	Propagation Delay	0.30	2.00	0.30	1.80	0.30	2.30	ns		(Note 7, Note
t _{PHL}	Data to Output									8, Note 10,
t _{PLH}	Propagation Delay	0.50	2.40	0.60	2.30	0.60	2.70	ns	Figures 1, 2	Note 11)
t _{PHL}	Enable to Output									
t _{TLH}	Transition Time	0.30	2.00	0.30	1.90	0.30	2.00	ns		(Note 10)
t _{THL}	20% to 80%, 80% to 20%									

Note 7: F100K 300 Series cold temperature testing is performed by temperature soaking (to guarantee junction temperature equals -55°C), then testing immediately after power-up. This provides "cold start" specs which can be considered a worst case condition at cold temperatures.


Note 8: Screen tested 100% on each device at +25°C, Subgroup A9.

Note 9: Sample tested (Method 5005, Table I) on each manufactured lot at +25°C, Subgroup A9, and at +125°C and -55°C temperatures, Subgroups A10 and A11.

Note 10: Not tested at +25°C, +125°C, and -55°C temperature (design characterization data).

Note 11: The propagation delay specified is for single output switching. Delays may vary up to 150 ps with multiple outputs switching.

Test Circuitry

Notes:

 $V_{CC}, V_{CCA} = +2V, V_{EE} = -2.5V.$

L1 and L2 = equal length 50Ω impedance lines.

 $R_T = 50\Omega$ terminator internal to scope.

Decoupling 0.1 μF from GND to V_{CC} and $V_{EE}.$

All unused outputs are loaded with 50Ω to GND.

 C_L = Fixture and stray capacitance \leq 3 pF.

Pin numbers shown are for flatpak; for DIP see logic symbol.

FIGURE 1. AC Test Circuit

100313

Switching Waveforms

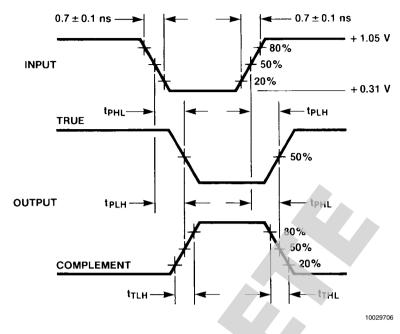


FIGURE 2. Propagation Delay and Transition Times

Physical Dimensions inches (millimeters) unless otherwise noted 1.215 (30.86) <u>0.025</u> (0.64) MAX 0.030-0.055 (0.76 - 1.40) RAD TYP 24 13 RAD ግ ግ ግ ሰ ግ P ጥ ጥ Ч 0.390 (9.91) MAX ր IJ U τJ U $\nabla \nabla$ IJ ᇇᇇ U Л 12 $\frac{0.032 - 0.042}{(0.81 - 1.07)} \, \text{TYP}$ 0.050-0.060 TYP 0.400-0.430 0.180 0.005 GLASS 0.<u>015 - 0.055</u> TYP (4.57) MAX (0.13) MIN TYP SEALANT (1.27 - 1.52) (10.16-10.92) (0.38 -1.40) 0.225 (5.72) MAX TYP ¥ 4 × ł 86° 94 -100° 0.008-0.012 90 TYP түр (0.20 - 0.30)0.125 TYP 0.055 0.090 - 0.1100.015 -0.021 (3.18) MIN 0.435-0.535 . lŀ (1.40) (2.29 – 2.79) TYP (0.38 - 0.53)(11.05 - 13.59)MAX TYP ТҮР BOTH ENDS J24E (REV J) 24-Pin Ceramic Dual-In-Line Package (D) NS Package Number J24E 0.370 MIN Typ 0.360 0.250 түр — 0.360 TYP 0.007 0.004 TYP (MOLDED BODY) PIN NO. 1 IDENT 19 C 12¹³ 6 7 0.018 0.016 TYP 0.075 MAX 0.050 8 PLCS 0.035 0.050 ± 0.005 0.085 MAX TYP 0.400 MAX TYP GLASS W24B (REV D)

24-Pin Quad Cerpak (F) NS Package Number W24B 100313

Notes

Pr	oducts	Design Support		
Amplifiers	www.national.com/amplifiers	WEBENCH® Tools	www.national.com/webench	
Audio	www.national.com/audio	App Notes	www.national.com/appnotes	
Clock and Timing	www.national.com/timing	Reference Designs	www.national.com/refdesigns	
Data Converters	www.national.com/adc	Samples	www.national.com/samples	
Interface	www.national.com/interface	Eval Boards	www.national.com/evalboards	
LVDS	www.national.com/lvds	Packaging	www.national.com/packaging	
Power Management www.national.com/power		Green Compliance	www.national.com/quality/green	
Switching Regulators	www.national.com/switchers	Distributors	www.national.com/contacts	
LDOs www.national.com/ldo		Quality and Reliability	www.national.com/quality	
LED Lighting	www.national.com/led	Feedback/Support	www.national.com/feedback	
Voltage Reference	www.national.com/vref	Design Made Easy	www.national.com/easy	
PowerWise® Solutions	www.national.com/powerwise	Solutions	www.national.com/solutions	
Serial Digital Interface (SDI) www.national.com/sdi		Mil/Aero	www.national.com/milaero	
Wireless (PLL/VCO) www.national.com/wireless P		SolarMagic™	www.national.com/solarmagic	
		PowerWise® Design University	www.national.com/training	

For more National Semiconductor product information and proven design tools, visit the following Web sites at:

THE CONTENTS OF THIS DOCUMENT ARE PROVIDED IN CONNECTION WITH NATIONAL SEMICONDUCTOR CORPORATION ("NATIONAL") PRODUCTS. NATIONAL MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS PUBLICATION AND RESERVES THE RIGHT TO MAKE CHANGES TO SPECIFICATIONS AND PRODUCT DESCRIPTIONS AT ANY TIME WITHOUT NOTICE. NO LICENSE, WHETHER EXPRESS, IMPLIED, ARISING BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT.

TESTING AND OTHER QUALITY CONTROLS ARE USED TO THE EXTENT NATIONAL DEEMS NECESSARY TO SUPPORT NATIONAL'S PRODUCT WARRANTY. EXCEPT WHERE MANDATED BY GOVERNMENT REQUIREMENTS, TESTING OF ALL PARAMETERS OF EACH PRODUCT IS NOT NECESSARILY PERFORMED. NATIONAL ASSUMES NO LIABILITY FOR APPLICATIONS ASSISTANCE OR BUYER PRODUCT DESIGN. BUYERS ARE RESPONSIBLE FOR THEIR PRODUCTS AND APPLICATIONS USING NATIONAL COMPONENTS, PRIOR TO USING OR DISTRIBUTING ANY PRODUCTS THAT INCLUDE NATIONAL COMPONENTS, BUYERS SHOULD PROVIDE ADEQUATE DESIGN, TESTING AND OPERATING SAFEGUARDS.

EXCEPT AS PROVIDED IN NATIONAL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS. NATIONAL ASSUMES NO LIABILITY WHATSOEVER, AND NATIONAL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY RELATING TO THE SALE AND/OR USE OF NATIONAL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF THE CHIEF EXECUTIVE OFFICER AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b) support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in a significant injury to the user. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness.

National Semiconductor and the National Semiconductor logo are registered trademarks of National Semiconductor Corporation. All other brand or product names may be trademarks or registered trademarks of their respective holders.

Copyright© 2009 National Semiconductor Corporation

For the most current product information visit us at www.national.com

National Semiconductor Americas Technical Support Center Email: support@nsc.com ww.national.com Tel: 1-800-272-9959

National Semiconductor Europe **Technical Support Center** Email: europe.support@nsc.com

National Semiconductor Asia Pacific Technical Support Center Email: ap.support@nsc.com

National Semiconductor Japan **Technical Support Center** Email: ipn.feedback@nsc.com

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Audio	www.ti.com/audio	Communications and Telecom	www.ti.com/communications
Amplifiers	amplifier.ti.com	Computers and Peripherals	www.ti.com/computers
Data Converters	dataconverter.ti.com	Consumer Electronics	www.ti.com/consumer-apps
DLP® Products	www.dlp.com	Energy and Lighting	www.ti.com/energy
DSP	dsp.ti.com	Industrial	www.ti.com/industrial
Clocks and Timers	www.ti.com/clocks	Medical	www.ti.com/medical
Interface	interface.ti.com	Security	www.ti.com/security
Logic	logic.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Power Mgmt	power.ti.com	Transportation and Automotive	www.ti.com/automotive
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Mobile Processors	www.ti.com/omap		
Wireless Connectivity	www.ti.com/wirelessconnectivity		
		u Hama Dawa	a O a Al a a m

TI E2E Community Home Page

e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2011, Texas Instruments Incorporated